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Abstract

Developing upon the ideas of an earlier publication it is shown how the theory of clas-
sical W algebras can be formulated on a higher genus Riemann surface in the spirit of
Krichever and Novikov. The basic geometric object is the Drinfeld-Sokolov principal
bundle L associated to a simple complex Lie group G equipped with an SL(2, C) subgroup
S, whose properties are studied in detail. On a multipunctured Riemann surface, the
Drinfeld-Sokolov-Krichever-Novikov spaces are defined as a generalization of the cus-
tomary Krichever—-Novikov spaces, their properties are analyzed and standard bases arc¢
written down. Finally, a WZWN chiral phase space based on the principal bundle L with
a KM type Poisson structure is introduced and, by the usual procedure of imposing first
class constraints and gauge fixing, a classical W algebra is produced. The compatibility of
the construction with the global geometric data is highlighted.
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1. Introduction

During the last few years, a large body of literature has been devoted to the
study of W algebras and to the understanding of their field theoretic realizations.
Originally introduced as higher spin extensions of the Virasoro algebra, they were
later shown to appear naturally in several contexts, such as cosets of affine Lie
algebras, gauged WZWN models, Toda field theory, reductions of the KP hier-
archy and, more recently, random matrix models, string theory and 2d quantum
gravity (see Ref. [1] for a comprehensive review of the subject and extensive
referencing).
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While the local properties of W algebras have been the object of extensive study,
a comparatively modest effort has been made in the analysis of their global prop-
erties so far [2-5]. The present paper, developing upon and expanding an earlier
work [6], is a contribution in such a direction. The approach adopted is inspired
on the one hand by the seminal work of Krichever and Novikov [7], which relies
on the classical theory of Riemann surfaces and holomorphic bundles thereupon,
and on the other by the equally seminal work of Drinfeld and Sokolov [8] and
by the techniques of Refs. [9-13], which use the theory of Poisson manifolds
and their reductions. Below, I shall provide a brief account of standard results
about Toda field theory and W algebras to introduce the basic concepts and mo-
tivate the technical analysis presented in later sections (see also Ref. [14] for a
review).

The Toda field equations can be put in the form of a zero curvature condition
for a connection ¥ satisfying a certain grading constraint. This allows for the
integrability of the Toda equations, a well established result [15]. It also hints to
its geometrical nature, which indeed is describable in the language of the theory
of holomorphic principal bundles.

The basic algebraic structure of Toda equations is a simple complex Lie group
G with an SL(2, C) subgroup S with Lie algebras g and s, respectively. g is equipped
with a conjugation t corresponding to a compact antiinvolution of g and leaving
s invariant. s has standard generators 7_, &, ¢, satisfying [7,,, ¢_,]1=2t,, [{0,
t:1]=*t. and tf=t_,. To t,, there is associated a half-integer gradation of g.

On a Riemann surface X of higher genus with holomorphic canonical line bun-
dle k, one can define a holomorphic G-bundle L, called the Drinfeld-Sokolov
bundle in Ref. [4], by

LOy=k=",, (1.1)

where a and b are coordinate labels.
The Toda field equations on the Riemann surface X are the zero curvature con-
dition for the connection ¥=dz C+dz C* of L° given by
C=de’e ?—dlngto+1it,,, (1.2a)
C*=2e"%_,g, (1.2b)

where the Toda field ¢ is a section of Ad L° such that ¢*=¢ and [#,, ¢] =0and g
is a metric of 2 compatible with its holomorphic structure. Explicitly,

d(de?e=?)—adIngty + 1., e*%_,]g=0. (1.3)

As shown in Ref. [5], this is just Hitchin’s self-duality equation for the Higgs
pair (L°, Q), where 2=4¢, , and the unitary connection is that of the Hermitian
metric of L° given by e?g .

Let G_ be the negative graded subgroup of G. One can show that, on any co-
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ordinate path, there exists a G_ valued smooth solution y of the equation

y='dy+2e*%t_,g=0, (1.4)
such that on two overlapping coordinate domains

Ya=LapysL ™", (1.5)
where L is the holomorphic G-bundle defined by

Loy =L°exp(.kap™"t_1) . (1.6)

A proof of this theorem for G=SL(n, C) was given in Ref. [5] but the result
holds in general. The integrability of Eq. (1.4) requires crucially the use of Toda
equation (1.3). The solution is however non unique. L was called Drinfeld-
Sokolov bundle in Ref. [6]. In fact, L° and L are distinct holomorphic forms of
the same smooth G-bundle. However, while L? has no flat form, L does. Hence,
L admits a holomorphic connection.

A holomorphic connection # of the bundle L can be obtained directly from the
Toda connection ¢ by a “gauge transformation” y satisfying (1.4). Eq. (1.4) is
indeed equivalent to the vanishing of (0, 1) component of #=dzJ+dzJ*:

J=AdyC+0dyy~'=Ady(de?e ?—dlngt,+ it  )+ayy~"', (1.7a)

J*=AdyC*+adyy~'=0. (1.7b)
The zero curvature condition, equivalent to Toda equations, now reads simply

4J=0. (1.8)
In fact, up to a factor «, J is the WZWN current and is given by

J=0hh~!, h=ye?g =Sy t1S-1, (1.9)

where y’ is a solution of (1.4), not necessarily equal to y, and S=e'™°. Since the
G-bundle L has a large holomorphic gauge group, it is possible to choose y in such
a way that the current Jin (1.7a) is of the form

J=%t+1—Rt_1+K’lW, adt_1W=0, (110)

where R is a background holomorphic projective connection.

The above discussion shows that, in the present gecometrical setting, the space
of chiral WZWN currents is to be identified with the affine space of holomorphic
connections of the holomorphic G-bundle L. The chiral currents belonging to Toda
field theory span a subspace of such space, which is, up to holomorphic gauge
equivalence, the one defined by the constraint (1.10).

The canonical Poisson structure of Toda field theory induces a Poisson struc-
ture on the space of the Toda connection J of the form (1.10), which, as a con-
sequence, obeys a classical W algebra [16]. In Refs. [9,10], it was shown that
Toda field theory can be formulated as a conformally invariant Hamiltonian re-
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duction of WZWN theory and that the classical W algebra structure can be re-
covered in this way. This is also the point of view adopted in this paper.

Following Ref. [7], the twice punctured Riemann surface 2\ {P_, P,} ob-
tained from X by removing two points P_ and P, in general position is consid-
ered, generalizing the customary cylindrical setting. The appropriate WZWN
phase space consists in the affine space of meromorphic connections of the bun-
dle L holomorphic off P_ and P, equipped with a suitable Poisson structure of
Kac-Moody type. Then, following Ref. [10], the WZWN phase space is reduced
by imposing first class constraints compatible with the conformal symmetry and
gauge fixing. A classical W algebra is yielded in this way.

The plan of the paper is as follows. In Section 2, a brief account of the basic
properties of sl(2, C) embeddings into simple complex Lie algebras used in the
sequel is given. In Section 3, a systematic study of the Drinfeld—Sokolov bundle
is carried out. Section 4 contains the basic notions of Krichever-Novikov theory
and the illustration of their generalization in the present context. Finally, in Sec-
tions 5, 6 and 7, the theory of the WZWN phase space and its reduction is pre-
sented, the properties of the reduced phase space are studied and the emergence
of a classical W algebra is shown.

2. sl(2, C) embeddings into simple complex Lie algebras

In this section, I shall briefly expound the main results on the theory of s[(2,
C) embeddings into simple complex Lie algebras which will be frequently relied
upon in the following. A classic treatment of the subject is provided by Ref. [17].

Remark. In this section, g is a simple complex Lie algebra. s is an s[(2, C) subal-
gebra of g. ¢, is the centralizer of s in g.

Theorem 2.1. g is completely reducible under ad s.

Proof. In fact, since s is a simple algebra, g is completely reducible under ad s,
by Weyl’s theorem (th. 8, ch. III of Ref. [18]). O

The non triviality of ¢; measures the degeneracy of the spectrum of s[(2, C)
irreducible representations in the reduction.

Let us denote by I7 the set of the representations of sI(2, C) appearing in the
reduction of g by ads, each counted with its multiplicity, by j,€Z/2 the spin of a
representation ne I7 and by I, the set {m|meZ/2, |m| <j,, j,—meZ}. Let us fur-
ther set j, =max{j, | ne IT}. Since ad s acts irreducibly on s, there is a distinguished
representation /7 corresponding to s, which will be denoted by o.

Theorem 2.2. s has a set of generators t;, d=—1, 0, + 1, satisfying the relations
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[t t_1]1=24, [fo,ts1]=Ft4, . (2.1)
Associated to these, there is a set {t, ,,|ne IT, mel,} of generators of g such that

[ta, by =CE itymsa, d=—1,0,+1, (2.2a)

Cim=U0+1)-m(mx1)]'?,  C),=m. (2.2b)
The Lie brackets of the t,, ., have the following form:

[ty en]= Ce[lzkelf FocUgs M5 e, nlje, K tes (2.3)

where (ji, my; jo, m,|js, my) is a Clebsch-Gordan coefficient and the F, .* are con-
stants depending only on the sl(2, C) embedding s and enjoying the following
properties. Fy," vanishes unless |je—j,| <j.<je+J, and je+j,—j.€Z. Further, for
any & n, (ell,

Fé‘ncz_ _1)]5+JH—JCF,I‘CC’ (2.4)
and, for any & n, {, Acll and any jeZ/2, j=0 with |j.—j,| <j<j:+j, and
jf+jr]_jez,

Zn {F@'I#Fu-ciaj;:‘j +FC‘C#FWIA‘QUC’J.'I’jC’ji;j’ju)

e

+F’I‘C#Fﬂ,éig(jrpjt;”jfaj,l;j;nj)}=0, (25)

where Q(ji, Jz, j3s jas Jor Jo ) = (= 1Y 574 2fs + 1) 2 (26 + 1) 2 W (1, fos 3o Jai o
Jo) and W(j\, j», j3, Ja; Js» Jo ) is a Racah—Wigner function [19]. Finally, one has

Lo,

o =F2""2, ., Lio=l, (2.6)
F,,;

F,t=~0,:U,U,+1)]1"*. (2.7)

Proof. (2.1) and (2.2) are standard results from the representation theory of
sl(2,C) [17,18]). Let [t, s ten) =S ccrmbers Fymcn “*tex, where the F, . . % are
structure constants. From the Jacobi identity for the triple of generators #,, ,, .,
t; ., ONE gets

C.iz.an.mzc.n Shmd_ Cﬁz,an.m+d:C‘nc'k_Cfc,"Fn.m:C,ndeé’k:O ’
d=-1,0,+1. (2.8)

For fixed &, 5, {11, such relations have the same form as the recurrence relation
of the Clebsch—Gordan coefficients. This yields (2.3). Egs. (2.4) and (2.5) fol-
low from the antisymmetry and the Jacobi identity of the Lie brackets and from
well-known properties of the Clebsch—Gordan coefficients [19]:

Uz, mas jy, myljs, my)=(—1 )}l+j2—j3(jl, mi;ja, Maljs, ms) ;
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Urs M52, Mo ljiz, my+my) iz, my+mys js, msljs, ma)
= Y U2y Ma3 J3, M3 jas, My +m3) Gy, My Jas, My +msljs, ma)
X (212 + 1) 2 (23 + 1) 2W (1, J2, Jasr J33 Jizs J23) -
Eq. (2.6) follows from comparing (2.1) and (2.2). Eq. (2.7) follows from (2.6)
and from comparing (2.3) and (2.2). m]
Denote by (-, -) the Cartan-Killing form of g.

Theorem 2.3. One has
(Ler, 1) =2(to, to) - (2.9)

For each representation ne I, there is a conjugate representation 1] such that j,= j;.
Further T=n and fj=n if and only if j,cZ. Moreover, for n, {c I, mel, and nel,

(tﬂ,m’ tC,n)=Nn5;1,C_(— l)jq—mam,—n ’ (2.103.)
where N, is a normalization constant such that
N;=(=1)*N,. (2.10b)

In particular, one has o= 0 and

No=— (4, b) - (2.11)

Proof. Eq. (2.9) follows easily from (2.1) and the ad invariance of the Cartan-
Killing form. For any homogeneous polynomial P of degree pin ad ¢, d=—1, 0,
+1, one has (Px, y)+(—1)?(x, Py)=0 for all x, yeg. Choosing P=ad ¢,
i(adt_,adt,,+adt,,adt_,)+(adt)? and x=¢,, and y=1,,, one finds

(tyms Len) =NyemyjOm.—n - (2.12)

Choosing for P=adt,, and x=¢,,, , and y=¢,_,, and using (2.12), one finds
further

NmC,m= n,C(_l)jq_m- (2.13)

The non singularity of the Cartan—Killing form implies that the matrix N, . is non
singular. From (2.12) and (2.13), it follows that

Nr],C=(—l)2quC,r]’ (214)

where j,=j;. Hence, the matrix N, . is either symmetric or antisymmetric. By a
congruence, it can be put in the form of either diagonal matrix with non zero
diagonal entries or a direct sum of matrices of the form ig, with a non zero coef-
ficient, respectively, where &, is a Pauli matrix. In both cases, for each ne I7 there
exists a unique f7e 7 such that N, ; #0. From here, (2.10) follows easily. The re-
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maining statements are obvious. |

Associated to the sI(2, C) subalgebra s of g, there is a half-integer grading of g.
Forany meZ/2, one sets g,,= @, 7Cty,m. This is just the eigenspace of ad ¢, with
eigenvalue m. Note that, g,,=0 for |m| >j,. One also introduces the subspaces
Qem= ®k<m Bks Qern = ®k#m g, etc.

It is readily seen that g, is a subalgebra of g. For any meZ/2 with m>0,g. _,,
and g. ,, are nilpotent subalgebras of g. It can be verified that ¢;=® ;7 ;,-0 Ct, .
In particular, ¢, is a subalgebra of g,. One also has the identity kerad (., =
®neHCtn. tn*

For principal s[(2, C) embeddings, g, is a Cartan subalgebra of g. Further, c, is
trivial, IT contains only integer spin representations of strictly positive spin with
unit multiplicity. This is no longer true for non principal sl(2, C) embeddings.

3. The Drinfeld-Sokolov holomorphic G-bundle and its properties

This section is dedicated to the study of the main properties of the Drinfeld-
Sokolov (DS) bundle, which is the basic geometric object entering in the con-
struction of classical W algebras illustrated in Sections 5, 6 and 7. The analysis
developed below envisages only the local properties of SL(2, C) embeddings into
simple complex Lie groups and, thus, is amenable by the Lie algebraic methods
developed in Section 2.

Remark. Throughout this section, the following assumptions are made. X is a
compact connected Riemann surface without boundary of genus />2. k®'/2isa
fixed theta characteristic. / is a fixed element of Z/2. G is a connected simple
complex Lie group. S is an SL(2, C) subgroup of G.

Recall that k®'/2®2= where k is the holomorphic canonical [-cocycle of X
defined by k,,=3,z,.

I denote by z the generic holomorphic coordinate of 2 and by d the operator
d/9z.1 further use lower Latin indices a, b, ¢, ... as labels for different coordinates.
Further, k®” is short for k®!/2®%" For any holomorphic 1-cocycle K on X repre-
senting some holomorphic bundle on X and any one empty open set U of X, I
denote by I'(U, ©(K)) and I'(U, .#(K)) the spaces of holomorphic and mero-
morphic sections of K on U, respectively. Finally, I denote by exp the exponential
map of G and by Cs the centralizer of S'in G.

3.1. The DS holomorphic G-bundle L

Definition 3.1. Let _,, {,, 1,.; be the standard generators of s. For any two over-
lapping coordinate domains, one sets
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Loypy=exp(—2Ink®'"?,15) exp(dakar™'t_1) , (3.1)
where exp is the exponential map of G.

Theorem 3.1. L={L,,} is a holomorphic G-valued 1-cocycle on X. It thus defines a
holomorphic G-bundle canonically associated to the pair (G, S).

Proof. One has exp(4rnit,) = 1. Further, k®!/2 is a holomorphic 1-cocycle on .
From these facts, it is easily checked that {exp(—2Ink®'/? 1)} is a holo-
morphic G-valued 1-cocycle on X. Using (2.1), it is then straightforward to verify
that {L,,}, also, is a holomorphic G-valued 1-cocycle on 2. m|

L will be called the DS bundle [4,6,20]. In application to classical W algebras,
the relevant 1-cocycles are of the form k®*®Ad L, where hZ/2. Below, I shall
carry out a systematic study of them.

3.2. Generalities on I'(X, #(k®"®Ad L))
Let @eI'(Z, #(k®"®Ad L)). ® can be expanded in the basis {t,,,|nell, mel,}

of g canonically associated to its sI(2, C) subalgebra s, obtaining

¢zz= Z ¢r],mtztr],m s (32)

neflmely

where the @, ,,, , are certain meromorphic functions.

Theorem 3.2. For any @eI'(X, #(k®"®Ad L)), one has
(prl,ma=k®hab Z L(”)abmn(pr;,nh s (33)

nelp

where L™ ={L‘"™ ,} is the holomorphic SL(2j,+ 1, C)-valued 1-cocycle

1
L(rl)abmn_ 1_[ Cj;,:r—r k®—mab(aakab—l)"‘m’
reN, 1 <r<n—m

~ (n=m)!
m,nel,, m<n, (3.4a)
L™, "=0, m,nel,,m>n, (3.4b)

where C¢, is given by (2.2b).

Proof. This follows easily from substituting the expansion (3.2) into the relation
@,=k®",, Ad L,,®, and then using (2.2). The calculation is straightforward. O

The following technical theorem will be of crucial importance in the following
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treatment. Recall that a projective connection R is a holomorphic 0-cochain {R,}
such that R, =k,,*(Ry — {24 25} ), where {z,,2z,} =03 In 2, —1 (3, Ind,z,)" is
the Schwarzian.

Theorem 3.3. Let R be a holomorphic projective connection. Let nell and uel,
with either u<h or u>j,+2h. Let g I'(Z, # (k®"=*)). Then, there exists a unique
element @cI'(Z, #(k®"@Ad L)) such that

¢r],m=¢5,u,m9 mG[,,,mZ/l, (353,)
Cr!
q)n.m: —— (a¢r],m+l + j:,:n+lR¢n,m+2) ’ mG[,’, m<mpu, (35b)
gu—h,m—h
D.,=0, (ell,(#n,nel, (3.5¢)

where g, , =4 (x(x+1)—y(y+1)). ® depends linearly on ¢. Moreover, if pe I'(Z,
O(k®h—#)), then ®eI'(X, O(k®"®AdL)).

Proof. g,_jm_nvanishes for m=pu, —u+2h—1.50, 8, 4 ,._»will vanish for some
mel, with m< pu if —j, < —p+2h—1<p, ie., —3+h<u<j,+2h—1. The latter
relation, however, cannot be fulfilled by the assumptions made on u. Hence,
8u—nm—n#0in the range of m values indicated. Further, (3.5b) provides a recur-
rence relation for the components @, ,, with m< u with (3.5a) as initial condi-
tion. This allows the unique determination of all @, ,, in terms of ¢, R and their
derivatives. It is also apparent that @, ,, is meromorphic. To complete the proof,
one has only to show that the @, ,,, as determined by (3.5b), glue according to
(3.3) with L given by (3.4). The verification is trivial for m> u. To show that
the statement is true also for m < u, one proceeds by induction. Suppose that one
has been able to show that the @, , glue according to (3.3) for nel, with m<n,
where mel, with —j, <m< p. By using this information, let us show that @, ,,,_,,
also, glues according to (3.3). Now, since m— 1€, and m— 1<y, one can use
(3.5b). Using the inductive hypothesis and (3.5a) one computes

+1

_ Jpm—1 RN+h -1

¢r],m— la= k ah{_’haakah Z L(”)abm"¢n,nh
gp—h,m—l—h nelpm<nspu

+ Z a[71‘('])ab rnn¢n,n b

nelpmsn<pu

gy—h,n—h ]
+ L(”)ab m"+ ¢r],n b

2 i
nelq,m—lsnsu—l( Cj,,,n
+1 (n) —1
—Rh Z Cj,,,n——lL K abm" q)r],nh
u

nelp,m+1<n<

+Cj-:,:nkah(Rh_{Za9zh}) Z L(”)ahm+ln¢r],nh} . (36)

nelpm+l<n<pu
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Let us compute d,L,,,". To this end, one uses (3.4) and the identities
kab-laazkab_l - % (aakab_l)zz{zaa Zb} and (Cj-,tl—l )2_ (C_Z-ll )2= (l+l) (l'_ i+1 )a
which follow easily from the definition of the Schwarzian and from (2.2b), re-
spectively. One finds

abIJ(rI)abiI= - (C_;,-ll /2 )L(”)abiH- ! + (Cj+ !—l/z)kab_lL(”)abi—- ll

!

+Ci oy {Zar 2o} L P i, iy lel, i<, (3.7)

Ind

where the first term vanishes for /=j,. From (3.4), it is straightforward to verify
also the identities

Cilhay L iy '=CH1 LM 7Yy lel,, i+ 1<, (3.8)
jj,’,-,t!—laakab-—lL(”)abi[: (l"'l+ 1 )kab_lL(”)abi—ll ’ is lGI,], ISI . (39)

Using (3.7)-(3.9) in (3.6) and performing some simplifications, one obtains

cr)
_ Jpm—1 R1+h Lo+1r () n+1
¢n,m—1a— k ab z _7Cj,,,nL " abm
g,u~h,m—l—h nelp,m<n<syu

n—m+1

Jnm—1

+ M)L(")abm’ﬂ-l(pq,nb} . (310)

+1
nelym—1<n<u—1 ( Cj,,,n

Employing (3.8) to express L, "+ in terms of L™, ,,_," one gets, after a
little algebra,

(pn,m—la=k®hab z L(")abm—ln(pn,nb- (311)

nelpym—l<snspu

By induction the proof is completed. The remaining statements are obvious. O

Definition 3.2. For R, 7, u and ¢ as in Thm. 3.3, let F,, ,(#|R) be the unique
element of PcI'(Z, #(k®"®Ad L)) satisfying (3.5).

By explicit calculation, one finds

Fh,n,u(¢|R)n,m=¢5y,m: mEIr], mzu, (3.12a)
Fh,n,,u(¢'R)n,m =Nh,r],u,mDh,,u,,u—m(R)¢: me[q, m<ﬂ, (312b)
where
Cjt!
Nh,r],,u,m= H — s (3.12¢)

nelpm<n<pu—1 gp—h,n-h
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Dy (R)=03,

Dy 2 (R)=0%+g,_nun R,

Dy 3 (R)Y=0+(8u—npy—n-1 +8u-nu—n—2)RI+&u_nu_n_1(3R) ,

Dy a(R)=0%+ (8u—p-n-1+8u—hpun—2t&unun_3)RI’
+(28u-—hu—n—1 +8u—nu-—s-2) (OR)9
+8unpun1((O°R)+8u_p_n_sR?),

etc. (3.12d)

These operators provide non trivial generalizations of the standard Bol operators
[21].

From the above, one deduces the following theorem. For any weZ/2 such that
w0, let J(k®~") denote the 2wth jet extension of k®~*, i.e., the holomorphic
SL(2w+1, C)-valued 1-cocycle defined by 9,70, =22"0J(k® ") 2o Gp,
m=0, 1, ..., 2wforany geI'(Z, #(k®~")).

Theorem 3.4. One has the direct sum decomposition

AdL~ @ L. (3.13)

nell
Further, for any ne Il, one has the holomorphic equivalence

L= J(k®=in) (3.14)

Proof. Eq. (3.13) follows from (3.3) and (3.4) directly. Choose a holomorphic
projective connection R. From (3.5), it is easily verified that, for any nell,
pel'(Z, #(k®~)) and mel,,

2n )

FO,ry,jy,(¢|R)ry,m= Zogr(”)(R)m"a"¢, (315)
where, for weZ/2 with w>0, ™ (R) isa (2w+1) X (2w+1) invertible lower
triangular matrix whose entries are differential polynomials in R. From (3.15),
¢ being arbitrary, (3.14) follows. O
3.3. Study of I'(2, 0(k®*"®Ad L))

Theorem 3.5. Let @cI'(Z, O (k®"®Ad L)). Then, in the expansion (3.2), one has
D,,,=0, nell, mel,, m>h, (3.16a)
D,,=0, nell,hel,,j,>—h. (3.16b)
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Proof. From (3.3) and(3.4), it follows that, if @, ,,=0 for mel,, m> n with nel,,
then @, ,eI'(X, 0(k®"~")). On the other hand, I'(X, 0 (k®"~"))=0 if h<n,
from the Riemann-Roch theory [22]. From these properties, beginning with
m=j, and proceeding by induction, one can easily verify (3.16a). If hel,, then,
from (3.3), (3.4) and (3.16a), it follows that @, ,eI"(Z, ©(1)). Thus, @, ,is a
constant ¢,, [22]. Using (3.3), (3.4) and (3.16a) once more, one finds that,
when h> —j,, @, 4_1.=Kpp(Ppp_15—Cith_ 1,40, Inky). If ¢, , Were non zero,
—(Cih_1¢yn) ™' D, would be a holomorphic connection of the canonical line
bundle k. These are known not to exist [22]. Hence, ¢, ,=0. O

Definition 3.3. For any weZ/2 with w>0,let {v{*’ |i=1, ..., d,} be abasisof I'(Z,
O (k®")). Further, let R be a holomorphic projective connection. For any ne I7
and uel, with either uy<hor uy=h=—j,and any i=1, ..., d,_ , set

Y(R)=F,, (v"="|R) . (3.17)

i
Theorem 3.6. For any holomorphic projective connection R, the set
(i (R)\nell, uel, with either u<h or u=h= —jp i=1, ..., dy_,} is a basis of
', 0(k®"®AdL)).

Proof. Since v{"-® el(X, O(k®"*)), Y® . (R)el'(X, 0(k®"®QAdL)) (cf.
Thm. 3.3). For veNu {0}, let ®@,eI'(Z, 0(k®*®Ad L)). Let I1, be the subset of
IT such that, for nell,, ®,,,,#0 for some mel,. For any nell,, let m,, be the
largest value of mel, such that @,,,#0. By (3.16), either m,,<h or
m,,=h=~j, From (3.3) and (3.4), it follows that ¢, ,6=
D, m, (X, O(k®"="*1)). Applying Thm. 3.3, one can construct an element
Frpmyn(@vn|R)ET(Z, O(k®*®AdL)) satisfying (3.5). Set @,,, =P, —
2neity Frpmyn(9vn|R). Clearly, @, el(Z, O (k®"®AdL)). It is easily checked
that I1,,, <11, and that, for nell, ., m,,, ,<m,,. Using the procedure outlined
above, given any element @Pel'(X, O (k®"®Ad L)), one can construct a finite
sequence Dy, D, ..., Py, of elements of I'(X, O (k®*®Ad L)) and a finite se-
quence Iy, 11y, ..., Il of subsets of IT such that ®o=P, Py, ,=0 and ¢=
Iy, =1l =< Il,. In this way, one reaches the representation
N

@= 3 Y Funm,(90n|R). (3.18)
v=0 nell,

From here, it is obvious that the Y°;");(R) span I'(Z, 0 (k®"®Ad L)), since ¢,
is expressible as a linear combination of the »{"~"  Suppose that
Z i Cruid 5 (R)=0, where c,,,cC. Then, one also has for each nell,
T i Copi V5 i(R) ,m =0 for mel,. Let u,,, be the largest value of u in the sum-
mation range. Now, by (3.5a) and (3.17), Y3}, :{(R) .0, =0 ~#" . Since the
v{" are linearly independent ¢, ; =0 for all i. Let , , be the next to largest value
of u in the summation range. Proceeding as above, one shows that ¢, ., =0 for
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all i and so on. ]

Theorem 3.7. One has
dimI'(Z, 0(k®"®AdL))= Y 1+ 3 |

nell jpel{—hh—1} nell jneZ+h,jp>max{—hh—1}

+ [dim (X, 0(k®'?))-1(-1)] Y 1

nell jneZ+h+1/2 jp>max{—hh—1}

+[ 3 U, +h)*+ 3 (2h—1)(2j,,+1)]
nell, j, >max{—hh—1}

nell, —h<jp<h—1

X(-1). (3.19)

Proof. From Thm. 3.6, it follows readily from here that
dimI'(Z, 0(k®"®AdL))= Y dimI(Z, 0(1))

nelljn=—h

+ 3 dim (X, 0(k®"-*#)) . (3.20)

nell jn> —huely,u<h
The right hand side of (3.20) can be computed using that dim I'(X, 0 (k®*))=1,
land (2h—1) (I—1), respectively, for h=0, h=1 and A>3 [22]. The calculation
is tedious but straightforward. a

3.4. Instability of the G-bundle L

Recall that a holomorphic G-bundle P is unstable if dim I'(X, ¢ (Ad P))>0.
This implies in particular the existence of non trivial holomorphic gauge trans-
formations of P, i.e., elements of the group I'(X, ©*(Ad P)) of holomorphic G-
valued sections of Ad P.

Theorem 3.8. The G-bundle L is unstable.
Proof. Indeed, from (3.19) with =0, it follows that dim I'"(X, O (Ad L))>0.0O
3.5. Flatness and flat structures of L

A holomorphic G-bundle P is said flat if it admits a flat form. Recall that a flat
form of a holomorphic G-bundle P is a G-valued constant 1-cocycle T such that
T,=V.P,V,~ ! for some holomorphic G-valued 0-cochain V. It can be shown
that P is flat if and only if there is a holomorphic connection of P, i.e., a holo-
morphic g-valued 0-cochain C such that C,=k,,(Ad P,,Cp+ ;PP ") [23].
Further, the flat forms of P are in one-to-one correspondence with the holo-
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morphic gauge equivalence classes of holomorphic connections of P, where the
action of a holomorphic gauge transformation yeI'(Z, 0*(P)) on a holomorphic
connection C is given by yC=Ad yC+dyy~' [23].

Theorem 3.9. The G-bundle L is flat.
Proof. This follows from Thm. 3.10 below. O

Definition 3.4. For any holomorphic projective connection R, let A(R) be a g-
valued 0-cochain defined by

A(R)o=3t01 ~Rut_, . (3.21)

Theorem 3.10. For every holomorphic projective connection R, the g-valued 0-co-
chain A(R) is a holomorphic connection of L.

Proof. Indeed, using (2.1) and the relation k., ~'0,°k. "' — 4 (0.kas ") 2= {20 20},
it is straightforward to verify that

A(R)z=kayp(Ad Ly A(R)p+0 Loy Lap™") (3.22)

showing the statement. |

One of the outstanding problems to be tackled is the description of the flat
forms of L. I do not have a complete solution of this problem. The answer is
expected to depend on the topology of the group G which the method used here,
essentially based on Lie algebra theory, cannot probe. In spite of this, a number
of results can be shown.

Definition 3.5. An element @eI'(Z, O(Ad L)) is said to be negative graded if @
is valued in g o. A holomorphic gauge transformation ye I'(Z, 0*(Ad L)) is said
to be negative graded if it is expressible as exp © for some negative graded ele-
ment Ocl' (X, O(AdL)).

Definition 3.6. A holomorphic connection C of L is said to be reduced if, for some
holomorphic projective connection R, C—A(R) is valued in kerad_,, where
A(R) is the connection (3.21).

From (3.1), one can readily check that these notions are coordinate
independent.

Theorem 3.11. 4 holomorphic connection C of L is reduced if and only if, for some
holomorphic projective connection R, C is of the form
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C=AR)+ ¥ w,t,_;,, w,el(E, O(k®n*+'Y). (3.23)
nelf

In that case, C admits the above representation for every holomorphic projective
connection R. Hence, the set of reduced holomorphic connections of L can be iden-
tified with the affine space A(R) +®,.;I'(Z, O(k®*")), the isomorphism de-
pending on the choice of R.

Proof. kerad t_, is spanned by the generators ¢, _;, with nell. Thus, Cis reduced
if and only if it is of the form (3.23), for some holomorphic projective connec-
tion R. Now, C—A(R)el'(X, O(K®Ad L)). Using (3.3) and (3.4), one checks
that w,eI'(Z, 0 (k®"*')). Finally, from (3.21), it appears that one can change
R arbitrarily by redefining w,, where oell is defined in Section 2. |

Theorem 3.12. For every holomorphic connection C of L, there is a unique negative
graded holomorphic gauge transformation yce I'( X, 0*(Ad L)) such that the gauge
transformed holomorphic connection C=y.C is reduced.

Proof. Pick a holomorphic projective connection R. For any holomorphic con-
nection C of L, set

Q(C|R)=C—-A(R) . (3.24)

Q(CIR)eI'(E, O(K®QAdL)). If yeI'(X, 0*(Ad L)) is a holomorphic gauge
transformation, one has

Q(}'CIR)=AdyQ(CIR)+aA(R)W_I, (325)

where d,zr)=0—ad A(R) is the covariant derivative associated to the connec-
tion A(R) acting on I'(Z, O(AdL)). For veNuU {0}, let 2,eI'(Z, O (k®AdL))
be of the form

Q, = y wyt, _;,+(tod.<—v/2+1), (3.26)

nelljnsv/2—1

where w,e '(Z, ¢(k®"*')) and the abbreviation t.0.d. < u denotes terms of -
degree less than u. From (3.3) and (3.4), it follows easily that, for nell with
J€Z+ (v=1)/2andj,>(v—1)/2,2,, __1,,, belongs to I'(Z, O(k®+1/2)),
Applying Thm. 3.3, one can construct the following negative graded element of
I, 0*(AdL)):

)’u=eXp( FO,r].—(V+l)/2(¢u,r]IRu))5

nell jneZ+ (v—1)/2yp>@—131/2

2
+1
Cinm w2

Pvy= Qw1125 (3.27)
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where R, is any chosen holomorphic projective connection. Define
Q,.1=Ady,Q2,+0r vy, " . (3.28)

Using the variational formula

dee—v= € Loy
T oadX ’

Egs. (2.2a) and (3.21) and (3.5a), one finds

Qv+1=_%[t+ls

nell jneZ+(v—1)/2,jp> (v—1)/2

XFoy—w+1y72(Pu IRu)r],—(v+1)/2tn,~(u+1)/2]

+ Y Wyt
nell jp<v/2—1

n,—Jn

+ > Qun—wony2tn—w-1)12
nell jneZ+(w—1)/2,jn=Ww—1)/2

+(tod.<—(v+1)/2+1)

= Y w,t, _j,+(tod.<—(v+1)/2+1),
nelljp<(v+1)/2—-1
wr]=9ur],—(u—l)/2, 7]5”,_],1=(V—l)/2 (329)

Thus, 2, ., is of the form (3.26) with v replaced by v+ 1. From (3.16) with A=1,
every QeI'(X, O(k®Ad L)) is of the form (3.26) with »=0. So, setting 2,=1,
one constructs a sequence Yo, ), ..., P Of negative graded holomorphic gauge
transformations of I'(X, ©®*(Ad L)) and a sequence 2, £,, ..., Q. , of elements
of I'(Z, O(k®Ad L)), where N=2j,+ 1, where j, is defined in Section 2. From
(3.26), 2y, is of the form

Qvir= Y @Oty_j, (3.30)
nell

where w,eI'(X, O(k®"*')). Now, take Q=Q(C|R) and follow the procedure
outlined above. Set
Ye=VNIN-1"0. (3.31)

Recall that g _ is a nilpotent Lie algebra and that, for a nilpotent Lie algebra, the
Hausdorff-Campbell formula holds with no restriction. From these facts, it fol-
lows that yc is a negative graded element of I'(X, ®*(Ad L)). From (3.25) and
(3.28), one has

Q(yCIR) =8y, . (3.32)
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Hence, by (3.24) and (3.30), y.C is reduced. This shows the existence of y.. Let
2, QelN'Z, O(k®Ad L)) be of the form

Q=Y w,t,_;, (3.33)

nell

with w;,eI"'(Z, 0(k®"*')) and let y be a negative graded element of I'(X,
0*(Ad L)) such that

92=Ad}'~Q|+6A(R)W_I. (3.34)
y can be written in the form
y=exp O, (3.35)

where @ is a negative graded element of I'(2, ¢ (Ad L)). Combining (3.33) and
(3.34) and using the variational formula

ad X
Xa_x_ © -1
oete ¥ = ix oX,
one finds
expad &—1
ad[-l[—p_me—— (6A(R)9_[9139])]=0- (3.36)

For any meZ/2, let n,, be the projector on g,, along g_,,. Since © is negative
graded, x,,0=0 for any meZ/2 with m> 0. Suppose that z,,6=0 for all meZ/2
such that m>n where neZ/2 with n<0. By grading reasons, recalling (3.21),
(3.36) yields

0=—1[t_1, [ts), 7, O]]1+ (to.d.<n) . (3.37)

Using that adt, ,gnkerads_,={0} and that g_onkeradr,,={0}, one con-
cludes that 7,8=0. Proceeding by induction, one shows that x,,6=0 for every
m. Thus, ®=0 and y=1. Now, let », and 7, be two negative graded elements of
I'(X, ©*(Ad L)) such that y,C and y,C are both reduced. Setting 2,=Q(y,C|R)
and y=y,7; ! above, (3.33) and (3.34) hold. So, y, =%,. This shows the unique-
ness of y.-. |

Theorem 3.13. Let yeI'(X, 0*(Ad L)) be of the form y=exp O for some OcI'( X,
0 (Ad L)). Then, y maps the space of reduced holomorphic connections of L into
itself if and only if ©=c Jor some constant element cec..

Proof. To begin with, one notes that, for any cec,, the g-valued 0-cochain & de-
fined by €,=c belongs to I'(2, 0(Ad L)), as follows easily from (3.1). Con-
versely, from (3.3) and (3.4) and the fact that the only holomorphic functions
on X are the constants [22 ], one easily shows that, if @< I'(Z, ¢ (Ad L)) is valued
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in ¢, then ©=c for some constant element cec,. For cec,,
adckerad!_,ckerad¢_,. So, if @=c for some constant element cec,, y maps the
space of reduced holomorphic connections of L into itself. This shows suffi-
ciency. Let Q,, Q,eI'(2, ¢ (k®Ad L)) be of the form (3.33) and suppose that
(3.34) holds for some holomorphic projective connection R. Then, (3.36) holds
as well. Let n,,, be defined as below eq. (3.36). By (3.16), #,,0=4,, o« for meZ/
2 with m> 0, for some constant element cec.. If z,,0=4,, oc for meZ/2 such that
m>n where neZ/2 with n<0, then, from (3.21) and (3.36), one gets

adc

1 expadc—1
_—E[t_,,T[tH,n,,O]]+(t.o.d.<n) . (3.38)

0= [z_l,ﬂ‘-l—c“—l (Bc—[2,,c]=L[ts1, 1,01) + (tod.<n+1 )]

Here, I have used that ¢ is constant and that (expadc—1)Q, is valued in
ker ad ¢_ . The latter property follows from the fact that 2, is valued in kerad ¢_,
and the already mentioned invariance of kerad ¢_, under ad ¢. Reasoning as done
below eq. (3.37), one can show that this relation entails that x,0=0. Proceeding
by induction, one concludes that #,,6=4,, oc for any meZ/2. Thus, O=c. If C,
and C, are two reduced holomorphic connections of L such that yC, = C,, then
Q,=Q(C;|R) fulfill the above assumptions. So @=c. This shows necessity. O

4. The Drinfeld-Sokolov-Krichever—Novikov spaces and their properties

In the first part of this section, I shall review briefly the main properties of the
Krichever—-Novikov (KN) spaces, which play an important role in the geomet-
rical framework expounded below. In the second part, I shall introduce the
Drinfeld-Sokolov-Krichever-Novikov (DSKN) spaces, describe their standard
bases and study their symmetries.

Remark. Throughout this section, the following assumptions are made. 2 is a
compact connected Riemann surface without boundary of genus /> 2. k®!'/2is a
fixed theta characteristic. 4 is a fixed element of Z/2. G is a simple complex Lie
group. Sis an SL(2, C) subgroup of G.

4.1. The standard KN theory

The basic ingredients of KN theory are the following:
(i) a finite subset 4 of X such that |4| >2 divided into two disjoint subsets 4,
and 4, such that |4,,| =1 and |4, | >1;
(i1) an element of p of I'(X, .# (k)) holomorphic on X\ 4 with a simple pole of
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positive (negative) residue at each point of 4;, (4,,,) and imaginary periods.
To avoid complication with the Riemann-Roch theory, the points of 4 will be
assumed to be in general position [7,24].
Chosing a base point Pye 2\ 4, set

{(P)=Re jp. (4.1)

Po

t is a single-valued harmonic function on 2\ 4 with the property that ¢(P) - —co
(+c0) when P approaches a point of 4, (4,..) [7,24]. So, ¢ defines a notion of
euclidean time on 2. For any 7R, the subspace of 2 of time 7 is

C,={P|PcI\4,1(P)=1}. (4.2)

C. is a disjoint union of simple loops in X\ 4 for all but finitely many critical
values of 7, whose number is bounded by 2/—2+ | 4]|. The critical values corre-
spond to processes of topological reconstruction in which either one loop splits
into two or more, or two or more loops merge into one. The points of X where the
reconstruction occurs are precisely the zeros of p and the number of loops in-
volved equals the order of the zero plus 2. For any two 1,, 1,€R, C,, is homolo-
gous to C,, in 2\ 4. Hence, for any weI'(Z, .# (k)) with poles contained in 4,
$c.w is T-independent.

The KN space KN, (4) of weight 4 is the set of the elements of I'(Z, .# (k®"))
whose poles are contained in 4 '. KN, (4) is an infinite dimensional complex vec-
tor space.

There exists a bilinear pairing of the spaces KN,(4) and KN, _,(4) defined by

dz

Cr

v, (4.3)

for any ¢cKN,(4) and weKN, _,(4). Note that the integration is well-defined
and independent of teR.

The space KN, (4) possesses a standard basis, the generalized KN basis. To
describe this, set r=|4,,|, s=|4,..| and p,=p,_,=h—[h] mod Z. The basis is of
the form {v{% |i=1, ..., r, NeZ+p,}. The basis elements v{%) are characterized
up to normalization by their zero order at the points 4. Let 4,,={P,}1 <j<r} and
dou={P;|r+1<j<r+s}. Then,

ord v} (P) =a;(N+1—h) =&, + (2h—1)(I=1)8,,1, +b,x . (4.42)

where

! In a different definition, also essential singularities at the points of 4 are allowed.
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1, 1<j<r,
a=1{—-1, r+1<j<r+min(r,s)—1, (4.4b)
—(Jr=s|+1)®C=9  r+min(r, s) <j<r+s,

and the b; y are rational numbers such that

r+s
Y bin=0, |bnyl<l, by=0, 1<j<r+min(r,s)—1, (4.4¢)
j=1
depending on j and N. These statements about b; y must be amended for finitely
many values of N when /4 takes the exceptional values 0, i for an odd theta char-
acteristic and 1. See ref. [24] for a detailed treatment of this matter and refs.
[25-28] for related approaches to the subject.
The relative normalization of the elements of the KN bases of KN, (4) and
KN, _,(4) can be chosen so that

<vl(,llw_h)9vj(,l}1\’)>=6i,j6M,—Ns i’j=l9"',r’ M) N€Z+ph. (4'5)

The Laurent theorem generalizes and one gets the expansion

r

o=3 oinvn, in=<VINT, 00, (4.6)
i=1 NeZ+pn
the series containing only a finite number of non vanishing terms [23]. Egs. (4.5)
and (4.6) imply further that the pairing (4.3) is non singular and that the spaces
KN, (4) and KN, _;(4) are reciprocally dual.

The basic symmetry group of the KN theory is the conformal group Conf,(4),
i.e., the group of holomorphic diffeomorphisms f of 2\ 4 onto itself with holo-
morphic inverse having finite order singularities at the points of 4 and homotopic
to idy. Its Lie algebra is Lie Confy(4) =KN_, (4). The Lie brackets are given by

[u, v]=udv—viu, (4.7)

for any two u, veLie Conf,(4).
Conf,(4) acts on the KN spaces KN,,(4). For any fe Conf,(4) and ¢cKN,(4),
the action is defined by

f*0a=k®"(N)apPpof . (4.8)
Here,

kE2(Nap=(3a5)""%, (4.9)
where the branch of the square root is chosen so that

k€2 (ids ) ap =k %0 (4.10a)

k®12(80 ) ac =k 2 () sk ®'/? (&) scOf , (4.10b)

for f, ge Confy(4). k®"(f)=k®!/2(f)®? by definition. At the infinitesimal level,
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(4.8) reduces into

0.p=udp+h(du)¢ (4.11)
for any ueLie Conf,(4). The KN pairing (4.3) is invariant under Conf,(4):

S S0 =Cv, 8>, (4.12)

(Ouy, 9> +<y, 0,95 =0, (4.13)

for any fe Conf,(4), ueLie Conf;(4) and any KN, (4) and weKN, _,(4).
4.2. The DSKN spaces

Definition 4.1. The DSKN space DS, (4) of weight 4 is the set of the elements of
', #(k®"®Ad L)) whose poles are contained in 4.

DS, (4) is an infinite dimension complex vector space.
Definition 4.2. For any @<DS,(4) and ¥eDS,_,(4), set

(¥ o= pE (@9 (4.14)

Cr

Note that the integration is well-defined and independent of teR. Eq. (4.14)
defines a bilinear pairing of the spaces DS, (4) and DS, _,(4), called the DSKN
pairing. It is the appropriate generalization of the customary KN pairing in the
present context.

4.3. The DSKN bases

The space DS,(4) admits standard bases. To construct them, one needs the
following result.

Recall that a meromorphic connection @ of k on X'is a meromorphic 0-cochain
{@,} on Xsuch that @, =k, (@, +d,Ink,,).

Definition 4.3. Let @ be a meromorphic connection of k on X whose poles are
contained in 4. Let further ne 1, ucl, and ¢cKN, _ ,(4). One sets

Ounu(9|@)=exp(—wadt_,)ot,, . (4.15)

Theorem 4.1. For any meromorphic connection @ of k on X whose poles are con-
tained in A and any nell, uel, and KN, _,(4), Q4 .(9|®)eDS,(A4). Further,
Qh.n..(9| @) depends linearly on ¢.
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Proof. Indeed, using (2.1), one has
exp(—@,adt_)t,,=k®*;, Ad L, (exp(—@,ad?_,)t, ) . (4.16)

From here, the statement is obvious. a

Definition 4.4. Let @ be a meromorphic connection of k on 2 whose poles are
contained in 4. For any nell, uel,, i=1, ...,r and NeZ+p,, set

Y& @) =0y (0 | @) . (4.17)

Theorem 4.2. Let @ be a meromorphic connection of k on X whose poles are con-
tained in A. Then, the set {Y'\"), \(@) |nell, pel,, i=1, ..., r, NeZ+p,} is a basis
0of DS ,,(4). The basis elements satisfy the relation

r(1l;u’}'\')l(w) ré lle(w) > =Nn5n,(;—( - 1 )jﬂ_udu,—véi,de,—N )
n(ell, pel,,vel,, ij=1,..,r, M,NeZ+p,. (4.18)
Finally, for any ®cDS,(A), one has

r

(p= z z z n;uN(w)rS]h)ut N(w) H

nell.uely i=1 NeZ+pn
By i (@) = (X R (@), DY /N, (= 1) 5, (4.19)

the series containing only a finite number of non vanishing terms.

Proof. Let DS, (4). Following a procedure totally analogous to that leading to
(3.18), one shows that

K
D=3 Y Onnmn(90n|@), (4.20)

v=0 nelly

where K is some non negative integer, /7, is a subset of IT and ¢, ,cKN,_,,, (4)
for each v and 7. Each ¢, , is given by a series of the form (4.6). Hence, the
"), v(@) span DS, (4). The linear independence of the Y'{%), . (@) is equiva-
lent to that of the fields v{}/t, ,, which is obvious. Eq. (4.18) is a straightforward
consequence of (4.14), (4.5) and (2.10). Eq. (4.19) follows from the represen-

tation (4.18) and from (4.6). a

Theorem 4.3. The pairing (4.14) is non singular. Therefore, the spaces DS, (4) and
DS, _.(4) are reciprocally dual.

Proof. This follows directly from (4.19) and (4.20). O
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4.4. The symmetries of the DSKN spaces

There exists a natural extension of the action of Conf,(4) to the DSKN spaces.
This leads to the following result.

Theorem 4.4. Conf,(4) acts on the space DS, (4) by setting

f*®, =k®"(f) .y Ad L(f) 0y @y of (4.21)
Jor arbitrary fe Conf,(4) and ®DS,(A), where

L(Nap=€xp(=2Ink®' 2(Nanto) exp(d k(N "t_1) . (4.22)
At the infinitesimal level, (4.21) can be written as

0, DP=ud 4(r, D+ h(du)d+[L(u|R), D], (4.23)

for any ucLie Conf,(4), where R is a holomorphic projective connection and
L(u|R)=[4t4,—0t,— (3’ +R)t_,u, (4.24)

d.4ry=0—ad A(R) being the covariant derivative of the connection A(R) defined
in (3.21). L(u|R)eDSy(4) and L(u|R) satisfies the equation

d4ryL(u|R)=—=D,(R)ut_,, D, (R)=0>+2R3+ (dR), (4.25)
where D, (R) is a Bol operator [21].

Proof. From (4.10a), it is easily verified that

L(ids) =L, . (4.26a)
From (2.1) and (4.10b), one verifies further that
L(gof)ar=L(f)abL(g)bcof9 (426b)

for any f, geConf,(4). Using (4.10) and (4.26) in combination, it is straightfor-
ward to verify that the right hand side of (4.21) belongs to DS, (4). The remain-
ing statements are straightforwardly verified. o

Note that 6,9 is independent of R. R is introduced only in order that the var-
ious contributions appearing in its expression have nice covariance properties.
Theorem 4.5. The pairing (4.14) is invariant under Confy(4). In fact, one has

S [PD =Y, D), (4.27)
(0,¥,D5+<¥,0,05=0, (4.28)
for any feConf,(4), ucLie Conf,(4) and any ®<DS,(4) and yeDS, _,(4).
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Proof. The verification is straightforward. ]

Denote by Gaugy(4) the group of gauge transformations ye I'(Z\ 4, #*(Ad L))
with finite order singularities at the points of 4 and homotopic to the identity. Its
Lie algebra Lie Gauy(4) is DS, (4) with Lie brackets

[E,A)=[e(E), e(A)], (4.29)

for any two =, AeLie Gauy(4), where in the right hand side e is the evaluation
map at a given point of 2\ 4 and the Lie brackets are those of g.

Gau,y(4) acts on the DSKN spaces by means of the adjoint representation, as
summarized by the following theorem.

Theorem 4.6. Gauy(4) acts on the space DS, (A) by setting

yd=Ad y® (4.30)
for arbitrary ye Gaug(4) and ®cDS,(4). At the infinitesimal level, (4.30) becomes
0=P=[E, @] (4.31)
Jor any EeLie Gaug.
Proof. The verification is straightforward. |

Theorem 4.7. The pairing (4.14) is invariant under Gauy(4). In fact, one has
¥y =<¥, D), (4.32)
(0=%, D) +(¥,6-P)=0 (4.33)

Jor any ye Gauy(4), EcLie Gauy(4) and any $eDS,,(4) and YeDS, _,(4).

Proof. This verification is also straightforward. O

Note that the total symmetry group is the semidirect product
Conf,(4)XGauy(4), where the product is defined by (f}, ) o (3, ¥2)=(fiofs,
v fi7*9,), for fi, fieConfy(4) and y,, y,€Gaug(4). The action of the first and
second factors are respectively right and left.

5. The Poisson manifold (W, {-, *},)

In this section, I shall introduce a Poisson manifold (W, {-, -},.) which is closely
related to the customary Kac-Moody phase space, though its geometry is in some
respects quite different. In fact, the construction uses the DS bundle L and the
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DSKN spaces in an essential way.

Remark. In this section, 2 is a compact connected Riemann surface without
boundary of genus />2. G is a simple complex Lie group. S is an SL(2, C)
subgroup of G.

In the application of the KN theory below, 4 consists of just two points P, and
P_ in general position. 4;, and 4,,, contain respectively the point P_and P, .p is
the unique element of I'(2, .#(k)) holomorphic on 2\ 4 with a simple pole of
residue +1 (—1) at P, (P_) and imaginary periods.

To lighten the notation, the dependence of the functional spaces encountered
below on 4 will be omitted.

The relevant space of the construction is

W=DS,, (5.1)

that is the DSKN space of weight 1. W is an infinite dimensional complex vector
space and, thus, also an infinite dimensional holomorphic manifold. The relevant
function space on W is the space D (W) of differential polynomials on W. W can
be endowed with a Poisson structure depending on the parameter ke C\ {0} and
supported on D(W). The Poisson structure is completely defined by assigning
the Poisson brackets of the linear inhomogeneous functionals on W. The Poisson
brackets of general elements of (W) are obtained by enforcing the Leibniz rule.
This leads to considering the dual space WV of W. Under the non singular DSKN
pairing (4.14), one has the identification

WY =DS,. (5.2)
Therefore, every linear functional on W is of the form
Ax(W)=<(X, W), WeW, (5.3)

for some XeW ™. Note that W~ has an obvious structure of Lie algebra.
For any X, Ye W" and any a, beC, the Poisson brackets of the inhomogeneous
linear functionals 4 y+a and A, + b are given by

{lx+a,ly+b}x=l[x,y] +kx(X,Y), (5.4a)
x(X,Y)=(X,d,Y>, (5.4b)

where A is the holomorphic connection of L given by (3.21) for some holo-
morphic projective connection R. R will be fixed once and for all in the following.
So, the dependence on R will be understood below, to simplify the notation.

It is straightforward to verify that the Poisson brackets {-, -}, are bilinear, an-
tisymmetric and satisfy the Jacobi identity as they should. In fact, one easily checks
that y is a Lie algebra 1-cocycle of WY . y depends on the choice of R, but changing
the choice alters y by a trivial 1-cocycle. y is singular, since x (X, Y) =0 identically
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whenever either X or Y are constant elements of ¢..

The above Poisson structure provides the proper geometric definition of Kac-
Moody phase space in the present context. The level and the Kac-Moody current
correspond to —k and x4+ W, respectively.

Next, one has to consider the symmetries of the Poisson manifold W. These
are given by suitable deformations of the conformal and gauge symmetries intro-
duced in Section 4.

Consider Conf,,. For any fe Conf, one has that y(/*X, /*Y)=x(X, Y) —k{ [ X,
Y],A—f~"*4>, where for fe Confy, *A=0L(f)L(f)~'+3fAd L(f)Aofand X,
YeW". Because of the non invariance of y, the action of Conf, on W, defined by
(4.21), is not Poisson: it does not leave the Poisson brackets invariant. However,
there is a deformation of the action enjoying this property. Set

(f*W), = *W+Kk(f*4—A), WeW. (5.5)

The deformation induces an action of Conf, on ®(W). It is sufficient to consider
the action on the functionals A y+a, Xe WY, acC, which is given by

(*Ax+a)(W)=Ax((/~*W),) +a
=Arex(W)+a+k(X,f~*4—-A4), WeW.  (5.6)

From (5.4) and (5.6), it follows that the action (5.5) is Poisson.
At the infinitesimal level, (5.5) and (5.6) become

O W), =Kd ,L(1)+6,W, (5.7)
(0.(Ax+a)) (W)= =2Ax((0,W),)=Aox(W)+K{L(u),d,X>, (58)

where ueLie Conf, and L (u) is given by (4.24). The action is Hamiltonian. In
fact, using (5.4), it is straightforward to verify that

(0.(Ax+a))={T,, Ax+alc, (5.9a)
T, (W)=(1/2k)uW, WY+ (L(u), W), WeW, (5.9b)
the Hamiltonian functions 7, being elements of D(W ). T, can be written as
T.W)=< u, T(W)>, WeW, (5.10a)
T(W)=(t, +0t,—(3*+R)t_,, W)+ (1/2k) (W, W) . (5.10b)

Using (3.1) and (2.1) and (2.9), it is straightforward albeit lengthy to check that
T(W)eKNs,. So, the map We W T(W)eKN, is the moment map of the Hamil-
tonian action.

For any ye Gau,, one has that (X, yY) =x(X, Y) - ([ X, Y],y 'd.>. So, the
ordinary action of Gau, on W, defined by (4.30), is not Poisson. However, in
this case too, there exists a deformation of the action enjoying such property,
namely
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(YW)e=yW+Kd .yy~"', WeW. (5.11)

The deformation induces an action of Gau, on the functionals A ,+a, XeW"~,
aeC:

(Y(Ax+a))(W)=Ax((y"'W),) +a
= x(W)+a+k(X, 0,97 "y>, WeW. (5.12)

By combining (5.4) and (5.12), one verifies that the deformed action thus de-
fined is Poisson. At the infinitesimal level, (5.11) and (5.12) become

(0= W), =0z W+Kd,E, (5.13)
(0=(Ax+a)) (W) =—Ax((0zW), ) =Asax(W) +K(E, 04X, (5.14)
where ZeLie Gau, (cf. Eq. (4.31)). From (5.4) and (5.14), one has
(O=(Ax+a))={Jz, Ax+a}., (5.15a)
J=(W)=(E, W), WeW. (5.15b)

Note that J-e D(W). From here, it appears that the deformed action of Gau, on
W is Hamiltonian with respect to the Poisson structure (5.4), the Hamiltonian
functions being the J-. J= can trivially be written as

J=(WY=(E,J(W)>, WeW. (5.16a)
J(W) =w. (5.16b)

So, the map WeWJ(W)eW can be identified with the moment map of the
Hamiltonian action.
By a straightforward calculation, one obtains

{T,, T}, =T +12K(ty, to)o(u,v) , u, veLie Confy, (5.17a)
where
o(u,v)=—15<¢u, D\v), (5.17b)

is the KN 1-cocycle and D, is given in (4.25). The proof of (5.17) uses (5.4),
(5.9b), (2.9) and the following two relations:

ud ,L(v)—vd L(u)+[L(w), L(v)]1=L([u,v]), (5.18)
x(L(u), L(v))=—(ty, to){u, D,v) , (5.19)

which are easily verified using (2.1) and (4.24), (4.25). (5.17) is a Poisson
bracket Virasoro algebra of central charge 12x(t,, t,). This is the well-known value
of the classical central charge encountered in the theory of classical W-algebras
[1,9-13]. The moment map T(W), Eq. (5.10b), is the energy-momentum ten-
sor. In the usual approach [9-13], the central charge originates from an improve-
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ment term added to the Sugawara energy—momentum tensor of Kac-Moody the-
ory in order to maintain conformal invariance upon carrying out the Hamiltonian
reduction of the Kac-Moody phase space. The first and second contributions in
expression (5.9b) of T, correspond more or less to such terms in the present
formulation. Here, however, the improvement term is yielded ab initio by the
nature of the DS vector bundle and the action of the conformal group of 2\ 4.
The second derivative term appearing in expression (5.10b) of T(W) has a
counterpart in the usual approach where it is added ad hoc after the reduction of
the phase space [9-13]. Here, it is present from the beginning and it is strictly
necessary to ensure the correct transformation properties of 7( W) under coor-
dinate changes.
From (5.4) and (5.15b), one gets

{(Jz, Libe=J 124 tx(E, A4) , E, AcLie Gau,, (5.20)

(5.20) is a Poisson bracket Kac-Moody algebra of level-x. The moment map
J(W), Eq. (5.16b), plays here the role of the Kac-Moody current.
From (5.4), (5.9b) and (5.15b), one also has

{T,,Jz}e=Jgz+Kx(L(u),Z), ucLieConf,, ZcLie Gau,. (5.21)

Hence, the current J(W) transforms as a primary field under Poisson bracket-
ting, except for the component corresponding to the generator ¢, , of g (see Eqgs.
(4.25) and (5.4b)). This also is familiar in the theory of classical W-algebras
[9-12].

It is interesting to write the Poisson bracket algebra in modes. One uses the KN
{v{R} and the DSKN bases {Y'{"), y(m@)} introduced in Section 4, where @ is a
meromorphic connection of k holomorphic on 2\ 4. In this case, r being 1, one
can suppress the index i. To simplify the notation, the dependence on @ will be

understood. Set
Tp=T,, (5.22)
J,,,,,,M=Jr$M, (5.23)

for PeZ and nell, pucl, and MeZ+p;, . Then, (5.17)-(5.21) yield the following
algebra:

{Tp, Tp}= RZZ DGR Tr—K(ty, 1)L~ 51, (5.24)

{J’I,#,M’ JC,V,N}K
= z Z FYI,C‘EUYI’ /l;jc, V|j¢9 ut+ y)fl(v!_#)}(v_”)%—ﬂ—ﬂ)‘lf,#+v,L

$ell LeZ+pj;

+KN'15'I,E( - 1 )j’l_#[ - %CJZL5u+ v+ l,05M+N,O
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F b0 N ot 01 (5.25)
{TP’ J']‘U'N}K
= LEzZW (200 YRR G SN GFmi -5 Sl A B SR
+2'°Kk (Lo, 1)L V0,00, (5.26)
for P, QeZ and n, (eI, pel,, vel, MeZ+p, and NeZ+p,,. Here,
AN Gamany = —muiP @ +nv" @dvy, v 7",  (5.27a)
TSN ey =0 @i, 0=y (5.27b)
s N tminsny =000 ®ui, v —m (5.27¢)
for m, neZ/2 and MeZ+p,,, NeZ+p,and LeZ+p,,, , and
LGV =<uir ", Dy Yy, (5.28a)
X5 = o™, At S (5.28b)
4! TN = ((R=Ry) @l ' =, 0™ (5.28¢)

for P, QeZ and meZ/2 and M, NeZ +p,,. o1, F, ;* and N, are defined in Section
2 (cf. Eqgs. (2.3) and (2.10)). D, is defined in (4.24). d,, is the covariant deriv-
ative of the connection @: d,¢= (8 —-mw)@ for pcKN,,.. R is the meromorphic
projective connection associated to @: R, =3dw— (1/2)@?. Assume now that the
poles of the meromorphic connection & are simple. Then the structure constants
S s €y and g8 hyynesy  vanish  unless
0<L—-M-N«l, 31, 51, respectively, whenever the values of the weights, written
within parentheses, do not take the exceptional values 0, { for an odd theta char-
acteristic and 1, while they are non zero only for finitely many values of L—M—-N
for the exceptional values of the weights. Similarly, 7™ 4™, ¢$7 '~ " and
DY vanish unless 0< —M—N<2/, 41, 61, respectlvely, for non exceptlonal
values of the weights, and are non zero only for finitely many values of M+ N for
the exceptional values of the weights. The calculation yielding the above formula
uses (2.1), (2.2), (2.3) and (2.10) and (3.21) and is straightforward.

6. The reduction of the Poisson manifold (W, {-, -},)
To obtain the classical W-algebras in the above framework, one has to impose
a suitable set of first class constraints on the Poisson manifold (W, {-, -},) and

then fix the gauge to reduce it. This is the subject of this section.

Remark. In this section, X, G, S, 4 and p are defined as in Section 5.
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The constraints imposed are linear. Their general form is
J-=0, EZeX, (6.1)

where X is some subset of Lie Gau, and ~ denotes weak equality. Such con-
straints are essentially of the same form as those used in Ref. [10] once one re-
calls that in the present formulation the counterpart of the Kac-Moody current
is kA+J(W). To implement the reduction of (W, {-, -},), one demands that the
constraints are first class. From (5.20), this yields the condition

[£,4]1eX and x(£,4)=0, = A4eX. (6.2)

One also requires that the constraint manifold is invariant under the action of
Conf,. From (5.21), this yields the condition

0,ZX and x(L(u),E)=0, uecLieConf,, ZcX. (6.3)

A maximal subspace of X of Lie Gau,, satisfying (6.2) and (6.3) is obtained as
follows. The treatment given here follows very closely that of Ref. [10]. Consider
the 2-form we A%g" defined by w(x, y) = (¢, 1, [x, ¥]), X, yeg. The restriction of
such form to g_, ,, is non singular. By the Darboux theorem, there is a direct sum
decompositiong_,,,=p_,,,q_,,, into subspaces of g_, ,, which are maximally
1sotropic and dual to each other with respect to w. Set

t=¢._®p_,2, (6.4)
which is a nilpotent subalgebra of g. Then, one has
X={Z|ZeLie Gau,, = valued in r} . (6.5)

This follows straightforwardly from (5.4b), (4.24), (4.25), the isotropy of
p_1,» with respect to @ and the gradation of g by f,. From the theory developed
in Section 3, it is not difficult to see that the condition of valuedness in t is com-
patible with changes of trivializations of L.

The constraint manifold W, is given in terms of the orthogonal comple-
ment r* of t with respect to the Cartan—Killing form

tt=g o®adt, P_y/2, (6.6)
and is explicitly given by
Weonse ={W| WeW, Wvaluedint+} . (6.7)

Here too, one can show that the condition of valuedness in t+ is compatible with
changes of trivializations of L.
From (4.23), (4.24) and (5.7), it follows that, for ucLie Conf, and WeW 4.,
(0,W) . W onsir- Thus the constraints are compatible with the action of Confj.
From (4.31) and (5.13), it follows that, for ZeX and WeW,_, ..,
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(0=W) € W ons.- The gauge symmetry, associated to the first class constraints
(6.1), must be fixed. The following can be shown.

Theorem 6.1. For any WeW ..., there exists a unique element 8y.c X depending
polynomially on W, R and their derivatives and such that

adf_,(exp 8, W), =0. (6.8)

Proof. The proof is quite similar to that of Thm. 3.12. The procedure described
by Eqgs. (3.26) through (3.30) applies also with X replaced by X\ 4. This leads
the construction of 6, by setting £2,=W and exp 8, =yr¥n_1.-.Yo. From (6.4)
and (6.5), it follows that 8¢ X. The argument explained in Egs. (3.33) through
(3.37) shows also the uniqueness of 6y,. From (3.5) and (3.27), it appears that
6, depends polynomially on W, R and their derivatives. Note that, unlike in the
proof of Thm. 3.12, 8,, depends explicitly on R since W is independent of R. O

This theorem generalizes an analogous theorem of Ref. [10]. Here, however,
due account is taken of the constraints coming from the global geometry of X and
L.

Definition 6.1. For any WeW ..., let
W.=(exp Oy W), . (6.9)

From (6.6)-(6.8), W_belongs to W_,,.. Clearly, because of the nilpotency of
r, W. depends polynomially on W, R and derivatives thereof. The uniqueness of
6, ensures further that the map W W. is gauge invariant, i.e., for ZeX and
We WCOnSlI’"

(expEW), . =W.. (6.10)
The above suggests the following gauge fixing condition:
W=W., WeW,.q, (6.11)

defining the reduced manifold W 4. W, .4 can be characterized in terms of a set
of second class constraints. Let

X'={Z|ZeLie Gaug, = valued in (kerad?_,)*}. (6.12)
Then, W 4 is the submanifold of W determined by
J==0, ZeX', (6.13)

and is explicitly given by
W, a={W|WeW, Wvaluedinkeradz_,} . (6.14)
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It is readily verified that (6.3) holds with X replaced by X’, showing that the
reduced manifold is invariant under Conf;,.

W..q equipped with the Dirac brackets {-, - }* supported on the space D(W,.4)
of differential polynomials on W, defines the reduced Poisson manifold

(Wred’ {.a }:)

7. The Poisson manifold (W, ., {, - }¥) and the classical ¥ algebra

The task now facing one is the computation of the Dirac brackets {-, -}% and
the study of the properties of W 4. This is the topic of this last section. In due
course, a structure of classical W algebra will emerge.

Remark. In this section, X, G, S, 4 and p are defined as in Section 5.
Any element WeW,, is completely characterized by an ordered sequence
(Wy) yerWith w,eKN;, , . Thus, one has the isomorphism
Wea= @ KN, 4, (7.1)
nell
which expresses the KN content of W,4. In fact, from (6.14), it follows that an

clement WeW belongs to W, if and only if ¥ is of the form
W= Z Wyly,

nell

s (7.2)
where w, eKN; .

The dual space W,., of W, .4 can be defined as the complex vector space of
ordered sequences X= (x,) .7 With x,eKN_; with the dual pairing being given
by

<Xa W>= Z”Nr]<-xrp Wﬁ> s (73)
ne
see Eq. (2.10). Thus, one has the isomorphism
Wi~ @ KN_, . (7.4)
nell

Since W.,. is a subspace of W, it is possible to characterize W2, as the quotient
of WY by the annihilator of W .4 in W" under the non singular dual pairing
(4.14). The quotient is parametrized by assigning an element of each equiva-
lence class. Of course, this should be done according to a convenient criterion. To
this end, the following theorem is useful.

Theorem 7.1. For any Xe W,y and any VeW ., there is a unique element EcW>
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such that
E,;, =x,, nell, (7.5a)
adt_,(d,—ad V)E=0. (7.5b)

Explicitly, one has
E=[1+Nad¢_(3,—ad V)1¥Py, Py= Y X;ly,, (7.6)
nell

where N is the formal inverse of M=4ad(_,adt,, extended by 0 on kerad . |
and KeN, K>2j,, where j, is defined in Section 2.

Proof. The proof given here is inspired by methods developed in Ref. [3]. Let
7, be the projector on kerad .., along ranad ¢_,. One has

NM=MN=1-n, , (7.7)
[n.,M]=0, [n,,N]=0, (7.8a,b)
[ad t,, M]1=0, [ad #,, N]=0. (7.9a,b)

Consider Eq. (7.5b). Next, I shall show that it can be solved locally in any coor-
dinate patch and give its general solution. Using (7.7), (7.8a) and (3.21), one
checks that (7.5b) is equivalent to

[1-Nad¢_,(d—ad(V-Rt_))](1-n )E

=Nad?¢_,(d—ad(V—Rt_,))n. E. (7.10)

The operator Nad r_,(d—ad(V—R¢_,)) satisfies the relations
[Nadt_,(d—ad(V—-Rt_,))]*=0, K>2j,, (7.11a)
Nadt_(d—ad(V—Rt_|))=Nad(_,(d,—ad V)+1—m, . (7.11b)

Eq. (7.11a) follows from (7.9b) and the fact that ad /_, lowers the degree by 1.
Eq. (7.11b) follows from (3.21) and (7.7). Recall that, for a nilpotent operator
T, (1-T)~" is defined and it is given by the series > ,T" containing only a
finite number of non vanishing terms. From (7.11), one has then
E=[1—-Nadt_,(d—ad(V—Rt_,))]"'n.E
K

Y (Nadt_(d,—ad V)+1-n,)"'n, E
0

n=

(1+Nadt_,(3,—ad V))¥n, E, K>2j,. (7.12)

This proves that the local solution of (7.5b) is completely determined by n, E.
This suffices to show the local existence and uniqueness of the solution of (7.5).
For any patch a, let E, be a local solution. From (3.1), it is easy to verify that
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adt_,(d4,—adV,)(AdL,E,—E,)=0. (7.13)

By the local uniqueness, it appears that the holomorphic g-valued 0-cochain {E_}
defines an element Ec W ifand only if n, (Ad L ,E,—FE,) =0. From (3.3) and
(3.4), this condition is equivalent to E,, ;, eKN, for ne/l. 0

Definition 7.1. For any XeW,/; and any Ve W _,, let X, be the element E of W"
given by (7.6).

For fixed Ve W, 4, the map X— X, defines a linear injection of W ., into W~
with the property that

(X, Wy=({Xy, W), (7.14)

for any XeW, 4y and WeW __,, where the pairing in the right hand side is the one
defined by (4.14). The above relation follows from (2.10), (7.2) and (7.6). Note
that (X,, W) is actually independent of V, since only the components X, ;, =
x, contribute to the result. This expression for (X, W) is important because it
can obviously be extended to any WeW.

The Dirac brackets {-,-}%x are completely defined by those of the linear
functionals

Ax(W)=(X, W) =4y, (W), WeW,.q,, (7.15)
for Xe W74, where I have used (7.14) and (5.3) and V'is any element of W,,.
The calculation of the Dirac brackets of the A  involves the choice of a basis of
X’. Luckily the explicit expression of the basis elements is not necessary to carry
out the calculation.
Theorem 7.2. For any X, YeW,.q, one has
{AXs AY}:( W) = < [XK—IWa YO]7 W> +KX(X03 YO) ’

={[Xo, Ye-rw], W) +xx(Xo, Yo) , WeW,. (7.16)

Proof. From (5.3) and (5.4), for any Z<Lie Gau, and VeW,q, one has

Uz, Axy } (W) =K(E, (,—K 'ad W)X,,>, WeW. (7.17)
From (6.12) and (7.17), it follows that
Ve, Ay e (W) Ly =0, ZEeX', WeW, 4. (7.18)

From this relation and the well-known formula of the Dirac brackets, one obtains
{AX’ AY}:( W) = {A'Xw A, Yo}x( W) | Vex—1W
={A’X0’A'YV}K(W)‘V=K_IW5 Wewred- (719)
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In the second member, I have used the fact that the Dirac bracket is independent
of the extension Ay, of 1, to W used to set V=0 and analogously in the third
member. The cocycle term is

<XK*‘W',6,4YO>=—<YK—‘W', aAX0>=<XO,aAY0> ) WEWred7 (720)
since, by (7.5b), 0,X,, 3,Yoe W, .4 and ( X;, W) is independent of VeW, 4 for
any WeW ;. 0O

The first term in the right hand side of (7.16) is a differential polynomial in
the x,, y, and w, and is computable in principle using (7.16). The second term,
proportional to k, is the anomaly. It can be calculated explicitly. The result is

2
X(XO, Y0)= z N,,|: I_l ‘CT:I <x,,,quy,7> R (721)
nell melpmz —jp+1 Jpm
D0=a 9
D|/2 =(92+%R N

D,=3%+2R3+(dR),

D3/2=a4+5R‘92+5(aR)a+%(62R+%R2) ’

D, =35+ 10R33>+15(3R)3%+ [9(d2R) + 16R2]1d+2[(3>R)+8R(3R)],
o (7.22)

The D; are the well-known Bol operators {21].

There are other relevant Dirac brackets. Consider the energy-momentum ten-
sor T. For any ueLie Conf,, the restriction of T, to W,.,4, which will be denoted
by the same symbol, is given by (5.9b) with We W, 4. Explicitly,

Tu=2—l/2(t0’t0)<u’ W{)>+(1/2K) z Nr]<ua wr]®2> > (7'23)

nell jy=0

where o< 1 is defined in Section 2. As appears, T,eD(W_,). Note that only the
components w, with ne /I and j, =0, which correspond to kerad 7_; n¢,, contrib-
ute to the term quadratic in W 2. From (7.16), one has

{T,, T} e=T +126(20, to)o(u, v) , (7.24)

for any u, veLie Conf,, which is to be compared with (5.17). Using (7.16), one
also finds

{Tu,lx}:=3~0,,x+KX(L(U),Xo) ) (7.25)
for any ueLie Conf, and any Xe W ., where 0,X=(0,x,),.71s given by (4.11)

2 [n Ref. [6], such a quadratic contribution was overlooked.
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with ¢=x, and h= —j,. The calculations involved in deducing (7.24) and (7.25)
are straightforward.

Let us discuss briefly the results just obtained. Eq. (7.16) defines a Dirac bracket
W algebra in the so-called lowest weight gauge. In fact, analogous expressions
have been worked out in the literature following closely related techniques (see
Refs. [9-13]). The W algebra proper is obtained by letting x,, and y, in (7.16)
be elements of the KN basis of KN_ . The form of the anomaly was first found
in Ref. [29] in a different approach, where, however, the deep relation with the
theory of SL(2, C) embeddings into simple Lie groups was not apparent. From
(7.24), it follows that the 7, form a Dirac bracket Virasoro algebra of classical
central charge 12x(t, t,). From (7.25), it also appears that the functions A , with
x,=0 are primary with respect to the Virasoro algebra. All the above properties
have a counterpart in the standard algebraic formulation to W algebras [9-13].

One may consider the W algebra obtained above in terms of modes. For any
nell and any MeZ+p, , let X, ), be the element of W4 defined by the ordered
sequence (J, V477" ). Set

Jnae =4 x,0, - (7.26)
From (7.16), by means of a straightforward calculation, one finds, to order O (x°),

i ; 2 )
{.]r],M,]c,N}:=KN,76,,,5|: H ] C}(W—M) }(V—Jq)

—1
melyms —jg+1 C jn.m

+Z Z Fn,gghﬁjf)z(\{()f1+k)j¢,L+0(’C_l), (7.27)

Sell LeZ+ pj;

for n, {ell, MeZ +p;, and NeZ+p, . Here,

. i) L _ . L .. 14/
hw)(ﬁ()(l+k)— < Z (_]r], maJC’ nI]f’]f)Xr[,MOn,mXC,NOC,n, U(—Z—J{)>s
melynelg,m+n=j¢
L 70 = (ol Dk
Xr],MO =F0‘,,,jq(l/1(w_j")) 3 etc. (728)

(cf. Eq. (3.12)) and F,; and N, are defined in Section 2 (cf. Eqs. (2.3) and
(2.10)). It can also be seen that A §° {, . ,, and {777 {7 vanish unless j, +
Je=2je SL—M—N< 20, +j;—je) + 1114 2js—j, —jc and —2(2j, +1)I<M+
N<O, respectively, if the weights involved are non exceptional. The expression
of X, a0 follows easily from noting that the equation ad ¢_,3,,X;, »s0=0 obeyed by
Xy.mois equivalent to (3.5) with k=0, u=j, and g=v§" .
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