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Abstract 

Developing upon the ideas of an earlier publication it is shown how the theory of clas- 
sical W algebras can be formulated on a higher genus Riemann surface in the spirit of 
Krichever and Novikov. The basic geometric object is the Drinfeld-Sokolov principal 
bundle L associated to a simple complex Lie group G equipped with an SL (2, C) subgroup 
S, whose properties are studied in detail. On a multipunctured Riemann surface, the 
Drinfeld-Sokolov-Krichever-Novikov spaces are defined as a generalization of the cus- 
tomary Krichever-Novikov spaces, their properties are analyzed and standard bases are 
written down. Finally, a WZWN chiral phase space based on the principal bundle L with 
a KM type Poisson structure is introduced and, by the usual procedure of imposing first 
class constraints and gauge fixing, a classical Walgebra is produced. The compatibility of 
the construction with the global geometric data is highlighted. 
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1. Introduction 

During the last few years, a large body of  l i terature has been devoted to the 
study o f  Walgebras and to the unders tanding o f  their  field theoret ic  realizations. 
Originally in t roduced as higher spin extensions o f  the Virasoro algebra, they were 
later shown to appear  naturally in several contexts,  such as cosets of  affine Lie 
algebras, gauged W Z W N  models, Toda  field theory,  reductions of  the KP hier- 
archy and, more  recently, r andom matr ix  models,  string theory and 2d quan tum 
gravity (see Ref. [ 1 ] for a comprehens ive  review of  the subject and extensive 

referencing).  
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While the local properties of W algebras have been the object of extensive study, 
a comparatively modest effort has been made in the analysis of  their global prop- 
erties so far [2-5 ]. The present paper, developing upon and expanding an earlier 
work [ 6 ], is a contribution in such a direction. The approach adopted is inspired 
on the one hand by the seminal work of Krichever and Novikov [ 7 ], which relies 
on the classical theory of Riemann surfaces and holomorphic bundles thereupon, 
and on the other by the equally seminal work of Drinfeld and Sokolov [ 8 ] and 
by the techniques of Refs. [9-13 ], which use the theory of Poisson manifolds 
and their reductions. Below, I shall provide a brief account of standard results 
about Toda field theory and W algebras to introduce the basic concepts and mo- 
tivate the technical analysis presented in later sections (see also Ref. [ 14 ] for a 
review). 

The Toda field equations can be put in the form of a zero curvature condition 
for a connection cg satisfying a certain grading constraint. This allows for the 
integrability of the Toda equations, a well established result [ 15 ]. It also hints to 
its geometrical nature, which indeed is describable in the language of the theory 
of holomorphic principal bundles. 

The basic algebraic structure of Toda equations is a simple complex Lie group 
G with an SL (2, C) subgroup S with Lie algebras fl and s, respectively. 9 is equipped 
with a conjugation t corresponding to a compact antiinvolution of fl and leaving 
s invariant, s has standard generators t_ ~, to, t÷l satisfying [t÷ 1, t_ ~] = 2to, [to, 
t_+ i ] = + t~ 1 and ttd = t_d. TO to, there is associated a half-integer gradation of ~. 

On a Riemann surface 2: of  higher genus with holomorphic canonical line bun- 
dle k, one can define a holomorphic G-bundle L °, called the Drinfeld-Sokolov 
bundle in Ref. [4], by 

tOab=k-t°ab,  ( 1.1 ) 

where a and b are coordinate labels. 
The Toda field equations on the Riemann surface ~ are the zero curvature con- 

dition for the connection ~ =  dz C+ dg C* of L o given by 

C=  de% - ~ -  0 In gto + ½ t+ 1 , ( 1.2a ) 

C* =2ead~t_ ~g , ( 1 .2b )  

where the Toda field ~ is a section of Ad L ° such that ~t = ~ and [ to, ~ ] = 0 and g 
is a metric of 27 compatible with its holomorphic structure. Explicitly, 

O(0e% -~) - OO In gto + [ t+ ~, ead~t_ l ] g = 0 .  ( 1.3 ) 

AS shown in Ref. [ 5 ], this is just Hitchin's self-duality equation for the Higgs 
pair (L °, I2), where 12= ½t+~ and the unitary connection is that of the Hermitian 
metric o fL  ° given by eeg -t°. 

Let G_ be the negative graded subgroup of G. One can show that, on any co- 
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ordinate path, there exists a G_ valued smooth solution 7 of the equation 

- % ~ + 2 e a d ~ t  l g = 0 ,  (1.4) 

such that on two overlapping coordinate domains 

Ya =LabTbL°ah - l ,  ( 1.5 ) 

where L is the holomorphic G-bundle defined by 

Lab = L Oab exp (  Oakab - I t - l  ) • (1 .6 )  

A proof of this theorem for G= SL(n, C) was given in Ref. [5 ] but the result 
holds in general. The integrability of Eq. ( 1.4) requires crucially the use of Toda 
equation (1.3). The solution is however non unique. L was called Drinfeld- 
Sokolov bundle in Ref. [6 ]. In fact, L ° and L are dist inct  holomorphic forms of 
the same smooth G-bundle. However, while L ° has no flat form, L does. Hence, 
L admits a holomorphic  connection. 

A holomorphic connection J of the bundle L can be obtained directly from the 
Toda connection ~ by a "gauge transformation" 7 satisfying (1.4). Eq. (1.4) is 
indeed equivalent to the vanishing of (0, 1 ) component o f J  = dz J +  d~J*: 

J = A d  ~ C + O w -  l =Ad 9,(0e°e-~- 0 lngto + ½t+ i ) + 0 ) 7 -  ~, ( 1.7a) 

J* = Ad 7C* + OW - l  = 0 .  (1 .7b)  

The zero curvature condition, equivalent to Toda equations, now reads simply 

oJ=0. (1.8) 

In fact, up to a factor x, J is the WZWN current and is given by 

J = O h h  - l  , h=?eOg- t°ST '*S  - I  , (1.9) 

where ~' is a solution of (1.4), not necessarily equal to ~,, and S=  e i"'°. Since the 
G-bundle L has a large holomorphic gauge group, it is possible to choose ~, in such 
a way that the current J i n  ( 1.7a) is of the form 

J = ½ t + l - R t  ~ + x - l W ,  ad t  1 W = 0 ,  (1.10) 

where R is a background holomorphic projective connection. 
The above discussion shows that, in the present geometrical setting, the space 

of chiral WZWN currents is to be identified with the affine space of holomorphic 
connections of the holomorphic G-bundle L. The chiral currents belonging to Toda 
field theory span a subspace of such space, which is, up to holomorphic gauge 
equivalence, the one defined by the constraint (1.10). 

The canonical Poisson structure of Toda field theory induces a Poisson struc- 
ture on the space of the Toda connection J of  the form (1.10), which, as a con- 
sequence, obeys a classical W algebra [ 16 ]. In Refs. [ 9,10 ], it was shown that 
Toda field theory can be formulated as a conformally invariant Hamiltonian re- 
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duction of WZWN theory and that the classical W algebra structure can be re- 
covered in this way. This is also the point of  view adopted in this paper. 

Following Ref. [ 7 ], the twice punctured Riemann surface S \  {P_, P+ } ob- 
tained from 27 by removing two points P_ and P÷ in general position is consid- 
ered, generalizing the customary cylindrical setting. The appropriate WZWN 
phase space consists in the affine space of meromorphic connections of the bun- 
dle L holomorphic off P_ and P+ equipped with a suitable Poisson structure of 
Kac-Moody type. Then, following Ref. [ 10 ], the WZWN phase space is reduced 
by imposing first class constraints compatible with the conformal symmetry and 
gauge fixing. A classical W algebra is yielded in this way. 

The plan of the paper is as follows. In Section 2, a brief account of the basic 
properties of 5t (2, C) embeddings into simple complex Lie algebras used in the 
sequel is given. In Section 3, a systematic study of the Drinfeld-Sokolov bundle 
is carried out. Section 4 contains the basic notions of Krichever-Novikov theory 
and the illustration of their generalization in the present context. Finally, in Sec- 
tions 5, 6 and 7, the theory of the WZWN phase space and its reduction is pre- 
sented, the properties of the reduced phase space are studied and the emergence 
of a classical W algebra is shown. 

2. st(2, C) embeddings into simple complex Lie algebras 

In this section, I shall briefly expound the main results on the theory of sl (2, 
C) embeddings into simple complex Lie algebras which will be frequently relied 
upon in the following. A classic treatment of the subject is provided by Ref. [ 1 7 ]. 

Remark. In this section, g is a simple complex Lie algebra, s is an sl (2, C) subal- 
gebra of g. % is the centralizer of  s in g. 

Theorem 2.1.9/s completely reducible under ads. 

Proof In fact, since s is a simple algebra, g is completely reducible under ad s, 
by Weyl's theorem (th. 8, ch. III ofRef. [ 18] ). [] 

The non triviality of c~ measures the degeneracy of the spectrum of s[ (2, C) 
irreducible representations in the reduction. 

Let us denote by H the set of  the representations of sl (2, C) appearing in the 
reduction of fl by ads, each counted with its multiplicity, by j ,  eZ /2  the spin of a 
representation r/e H and by I, the set { m I m ~ Z~ 2, I m I ~-<J,, J , -  m e Z }. Let us fur- 
ther set j .  = max{j,[ qe//}. Since ads  acts irreducibly on s, there is a distinguished 
representation H corresponding to s, which will be denoted by o. 

Theorem 2.2. s has a set o f  generators ta, d=  - 1, 0, + 1, satisfying the relations 
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[t+, , t_~]=2to,  [to, t + , l = + t + , .  (2.1) 

Associated to these, there is a set {t..m [ rI~H, meI .}  of  generators of  g such that 

[td, tq.m] d =C~..mt.,m+d, d = - l , 0 , + l ,  (2.2a) 

C i , ~ = [ j ( j + l ) - m ( m + l ) ]  '/2, C ° m = m .  (2.2b) 

The Lie brackets of  the t.m have the following form: 

[t..m, t~..] = ~ F~.¢ ¢(j,, m;j¢, nlj¢, k)t¢,k, (2.3) 
¢eH, kel¢ 

where (j~, m~; j~, m2 [J3, m3 ) is a Clebsch-Gordan coefficient and the F,z e are con- 
stants depending only on the st (2, C) embedding s and enjoying the following 
properties. Fe,, ~ vanishes unless I je- j ,  l <~ jc <~ je + j ,  and je + j . - j c s  L Further, for 
any ~, ~, ~elI, 

F~..:= - ( -  1 )J¢+J"-J~F,~.¢;, (2.4) 

and, for any ~, q, ~, 2 e H  and any jeT]~2, j>~O with IJ¢-J.I <<.J<~J¢+J,~ and 
j¢+j~- jeZ,  

Z {F¢.,UFu.¢aSJ,,.J + F¢.¢I'Fu.,, ~f2 (J¢, J,, J¢, J~;J, J~ ) 
,u e Fl 

+F,.fF~,.~ag2(j,,j~,jo£;j~,,j)} = 0 ,  (2.5) 

whereg2(jl,jz,j3,j4;j6,J6) = ( -- l )J~+J~-J"(2j5 + l ) ~/2 (2j6 + l )l/:W(j~ ,j2,j3,j4;Js, 
J6 ) and W(j~, j:, J3, J.; Js, J6) is a Racah- Wigner function [19]. Finally, one has 

to.±t = ~ 2 - 1 / z t +  ( 2 . 6 )  _ 1 ,  to,0 = t o ,  

Fo.n~=F..S= - ~..¢[j. (j~ + 1 ) ] ' /~ .  (2.7) 

Proof (2.1) and (2.2) are s tandard results from the representation theory of  
sl (2, C ) [ 17,18 ]. Let [ t..m, t~,. ] = ~.¢~ n,k~ 1¢ F~,,.~ ~,. ¢'kt¢,k, where the F..,.: ¢S 'k are 
structure constants. From the Jacobi identity for the triple of  generators ta, t. ..... 
t~.n, one gets 

C~,d F~,m;¢,. ¢,*-d__ Cd,mF~.,.+ d.¢.,¢,*__ Cd,.F~.m:¢..+ d¢.*= O, 

d = - l , 0 ,  + 1 .  (2.8) 

For fixed ~. r/, ~eH, such relations have the same form as the recurrence relation 
of  the Clebsch-Gordan coefficients. This yields (2.3).  Eqs. (2.4) and (2.5) fol- 
low from the an t i symmetry  and the Jacobi identity of  the Lie brackets and from 
well-known properties of  the Clebsch-Gordan  coefficients [ 19 ]: 

(J2, m2;j, ,  ml l J3, m3) = ( - 1 )J'+J2-J3(jl, m, ,j2, m 2  [J3, m3) ; 
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(Jl, ml ;J2, m2 [J12, ml +m2)(J12, ml +m2;J3, m3 ]J4, m4) 

= Ej23(J2 ,  m 2 ; j 3 ,  m3 ]J23, m2 +m3) (Jl, ml ;J23, m2 +m3 IJ4, m4) 

× (2j12 + 1 ) ~/2(2j23 + 1 )1/2 W(j~ ,Jz,J4,J3;J~2,J23) • 

Eq. (2.6) follows from comparing (2.1) and (2.2). Eq. (2.7) follows from (2.6) 
and from comparing (2.3) and (2.2). [] 

Denote by (., • ) the Cartan-Killing form of ~. 

Theorem 2.3. One has 

(t+~, t_~ )=2( to ,  to) . (2.9) 

For each representation rle lI, there is a conjugate representation O such that j , = j  o. 
Further ~l = rl and O= q i f  and only i f j ,  e T_. Moreover, for ~, ( e l l ,  m e I,  and n e I¢ 

(t,.m, t¢,.)= N,6,.¢-(- 1 )s"-mr., _ . ,  (2.10a) 

where N,  is a normalization constant such that 

No= ( -  1 )2J"N, . (2.10b) 

In particular, one has o= 6 and 

N o = - ( t o ,  to) . (2.11) 

Proof Eq. (2.9) follows easily from (2.1) and the ad invariance of the Cartan- 
Killing form. For any homogeneous polynomial P of degree p in ad td, d= - 1, O, 
+1, one has (Px, y ) +  ( - l ) V ( x ,  P y ) = 0  for all x, yeg. Choosing P=adto ,  
½ (ad t_, ad t+ ~ + ad t+ ~ ad t_ ~ ) + (ad to)2 and x =  tn, m and y =  t¢.,, one finds 

( t,,m, t¢,.)=N,.¢.,~j,,j¢C~m._. . (2.12) 

Choosing for P = a d t + ,  and x=t.,m_~ and y=t¢,_.,  and using (2.12), one finds 
further 

N q . ¢ . m = N , . ¢ ( - 1 )  j"-m . (2.13) 

The non singularity of the Cartan-Killing form implies that the matrix N~,¢ is non 
singular. From (2.12 ) and (2.13 ), it follows that 

N,,¢= ( - 1 )ZJ,N¢,., (2.14) 

where j ,=j¢. Hence, the matrix N,,¢ is either symmetric or antisymmetric. By a 
congruence, it can be put in the form of either diagonal matrix with non zero 
diagonal entries or a direct sum of matrices of the form ia2 with a non zero coef- 
ficient, respectively, where a2 is a Pauli matrix. In both cases, for each qeHthere  
exists a unique 0eHsuch  that N~,o~O. From here, (2.10) follows easily. The re- 
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maining statements are obvious. EZ 

Associated to the st (2, C ) subalgebra s of  g, there is a half-integer grading of g. 
For any m~Z/2, one sets gm= ~n~nChl, m. This is just the eigenspace ofad to with 
eigenvalue m. Note that, gin= 0 for I ml > j . .  One also introduces the subspaces 
g<m =(~k<m gk, g#m =(~kv~m gk, etc. 

It is readily seen that go is a subalgebra of g. For any m~7_/2 with m > 0, g . . . . .  
and g> ,, are nilpotent subalgebras of g. It can be verified that c~ = ~,~Hj~=o Ct~,0. 
In particular, c~ is a subalgebra of go- One also has the identity ker ad t±:~= 

For principal sl (2, C) embeddings, go is a Cartan subalgebra of g. Further, c~ is 
trivial,/-/contains only integer spin representations of strictly positive spin with 
unit multiplicity. This is no longer true for non principal sl (2, C ) embeddings. 

3. The Drinfeld-Sokolov holomorphic G-bundle and its properties 

This section is dedicated to the study of the main properties of the Drinfeld- 
Sokolov (DS) bundle, which is the basic geometric object entering in the con- 
struction of classical W algebras illustrated in Sections 5, 6 and 7. The analysis 
developed below envisages only the local properties of SL (2, E) embeddings into 
simple complex Lie groups and, thus, is amenable by the Lie algebraic methods 
developed in Section 2. 

Remark. Throughout this section, the following assumptions are made. S is a 
compact connected Riemann surface without boundary of genus 1>~ 2. k ~1/2 is a 
fixed theta characteristic, h is a fixed element of Z/2. G is a connected simple 
complex Lie group. S is an SL (2, C ) subgroup of G. 

Recall that k*~/2*2=k, where k is the holomorphic canonical l-cocycle of S 
defined by kab = O aZb. 

I denote by z the generic holomorphic coordinate of X and by O the operator 
O/Oz. I further use lower Latin indices a, b, c, ... as labels for different coordinates. 
Further, k ®h is short for k ®~/2®2h. For any holomorphic l-cocycle Kon  27 repre- 
senting some holomorphic bundle on 27 and any one empty open set U of 27, I 
denote by F( U, (9 (K))  and F( U, J i ( K ) )  the spaces of holomorphic and mero- 
morphic sections of K on U, respectively. Finally, I denote by exp the exponential 
map of G and by Cs the centralizer of S in G. 

3.1. The DS holomorphic G-bundle L 

Definition 3.1. Let t_ 1, t0, t÷ ~ be the standard generators of s. For any two over- 
lapping coordinate domains, one sets 
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Lab =exp(  - 2  In k ® J / 2abto ) ex p ( O a kab- ~ t_ 1 ) , 

where exp is the exponential map of G. 

(3.1) 

Theorem 3.1. L = {Lab } is a holomorphic G-valued 1-cocycle on S. It thus defines a 
holomorphic G-bundle canonically associated to the pair ( G, S).  

Proof. One has exp(4ni t0)= 1. Further, k ~1/2 is a holomorphic l-cocycle on 27. 
From these facts, it is easily checked that { e x p ( - 2  ln k*t/2abto) } is a holo- 
morphic G-valued l-cocycle on 27. Using (2.1), it is then straightforward to verify 
that {Lab}, also, is a holomorphic G-valued 1-cocycle on 27. [] 

L will be called the DS bundle [4,6,20 ]. In application to classical Walgebras, 
the relevant 1-cocycles are of the form k®h®Ad L, where h~21_/2. Below, I shall 
carry out a systematic study of them. 

3.2. Generalities on F(27, ~g(k®h®Ad L)) 

Let ~EF(S,, Jg(k®h®Ad L) ). • can be expanded in the basis {t,7, m I t / e / / ,  mEI~} 
of 9 canonically associated to its sl (2, C ) subalgebra s, obtaining 

(1)a = E (I)~,matq,m , (3.2) 
q~ FI, m e l~ 

where the O,.m a are certain meromorphic  functions. 

Theorem 3.2. For any chEF(Z,, JC(k®h®Ad L) ), one has 

~),l.ma=k®hab ~ L (")abm"~,.,,h . (3.3) 
nElq 

where L (~) = {L (')ab} is the holomorphic SL(2j,  + l, C)-valued 1-cocycle 

l ~i~r_ < Jrl'n--r] k ® _ m a b ( O a k a b _ l ) n _ m  ' L ( r l )abmn= (n--m)! (reN, l ~< . . . . .  n C + l  

m, nEIu, m<~n , (3.4a) 

L(e)abmn-=o, m, nEI,,  m > n ,  (3.4b) 

where Cdk is given by (2.2b). 

Proof. This follows easily from substituting the expansion (3.2) into the relation 
~a = k®hab Ad Lab~b and then using (2.2). The calculation is straightforward. [] 

The following technical theorem will be of crucial importance in the following 
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treatment. Recall that a projective connection R is a holomorphic 0-cochain {R,} 
such that Ra =kab2( Rb-{z~, zb} ), where (Za, z~} =O~ In O~z~- ½ (Oh In O~za) 2 is 
the Schwarzian. 

Theorem 3.3. Let R be a holomorphic projective connection. Let qe l7 and lte I,~ 
with either lt < h or ll >~ j, + 2h. Let Oe F( S, J l  ( k ®h-u) ). Then, there exists a unique 
element ~eI ' (S ,  ~-/(k®h®Ad L) ) such that 

q~.,,,=¢d..,,,, meI~, m>~lt, (3.5a) 

C+l 
( I ) t l ,m~  - Jtl, m ( O ~ q , m + l  ~_ + l  C).,,,,+lR¢.,m+2) , meI~, m<l i ,  (3.5b) 

g/~-h,m-h 

• ¢ . .=0 ,  (ell ,  (#rl, nel¢, (3.5c) 

where gx.y= ½ ( x( x + 1 ) - y(y  + 1 ) ). cb depends linearly on 0. Moreover, i f  Oe F( S, 
(~(k ®h-u) ), then q~eF(X, (9(k®h®AdL ) ). 

Proof g,-h,m-h vanishes for m=/ t ,  - # + 2 h -  1. So, glt_h.m_ h will vanish for some 
meI,  with m < / t  if -j,~< - / t + 2 h -  1 </t ,  i.e., -½+h<l~<~j,+2h- 1. The latter 
relation, however, cannot be fulfilled by the assumptions made on/ t .  Hence, 
gu- h,m- h # 0 in the range of m values indicated. Further, ( 3.5b ) provides a recur- 
rence relation for the components ~,,,~ with m ~</~ with (3.5a) as initial condi- 
tion. This allows the unique determination of all tO,,m in terms of¢ ,  R and their 
derivatives. It is also apparent that ~,,,~ is meromorphic.  To complete the proof, 
one has only to show that the ~,,m, as determined by (3.5b), glue according to 
(3.3) with L t~) given by (3.4). The verification is trivial for m >/#. To show that 
the statement is true also for m </~, one proceeds by induction. Suppose that one 
has been able to show that the q~,,, glue according to (3.3) for neI, with m<~n, 
where meI,  with - J r  < m ~< #. By using this information, let us show that q~, . . . .  ~, 
also, glues according to (3.3). Now, since m - l e I ,  and m - 1 < / ~ ,  one can use 
(3.5b). Using the inductive hypothesis and (3.5a) one computes 

C~-l { 
: J~l ' m - I  k ® l + h a b  -hOak~b -I ~ L(")~b,."~,,nt, 

(~q,m-- I a gU--h ,m--  1 --h nelq,rrt <~n<~It 

+ ~ ObL(")ab,~"~,,.t, 
nElq,m<~n<~it 

+ ~ +l L(")~bm"+~q~,,"b 
n~lq,m--l<~n<~,l--I ~k G q , n  J 

--Rb Z CJ+,l'-'L UT'"bm"-'@'l,"b 
ne lq ,m+ I <~ n<~,u 

+ l  + G.,m kob(g  -- {Za, Z,,} ) L~")ab.,+fl~..nb } . (3.6) 
nel~l,rn+ 1 <~n<~It 
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Let us compute O b L ( q ) a b m  n.  To this end, one uses (3.4) and the identities 
kab-IOa2kab - ' -  ½ (Oakab -~ )2= {Z,, Zb} and (Cj+~_,)2_ (Cj,3')2= ( l + i ) ( l - i +  1 ), 
which follow easily from the definition of the Schwarzian and from (2.2b), re- 
spectively. One finds 

O b L ( q ) a b l l _ _  +1 (q) 1+1 t~+~ 12~ k - I L ( q ) a b i _  1 . - - ( C ) , j / 2 ) L  abi  " J l - ~ ' j . , i - - I I  l a b  1 

+C~.]k~b{Z~, Zb}L~")ab~+, t, i, leI,, i<~l, (3.7) 

where the first term vanishes for l=jq. From (3.4), it is straightforward to verify 
also the identities 

Cj+) kab t  (q)abi+ll=Cj+,]_lL (q)abi l -I  , i, l~I,~, i+ 1 <~1, (3.8) 

Cj+,]_lOakab-lL(q)abi l=(l-- i 'F1)kab-lL(q)abi_,  1 , i, lelq, i<~l. (3.9) 

Using ( 3.7 ) -  ( 3.9 ) in ( 3.6 ) and performing some simplifications, one obtains 

( l ~ q , r n _ l a  ~ jq, m - - I  k ® l + h  I t ' + I t ( q )  n + l  
g l , - h , m - -  1 - h  ab - -  "2 ".-'j~l,n "L" ab m t n e l q , m ~ n < ~ , u  L 

( - h  n - m +  1 + 
C+l j q , m - -  1 l C ) q , m _  1 kab- l t (q)abm_l  n tl)q,nb 

) 
2 g ' u - - ~ l - - h  L(q)abmn+ll~q, nb~. (3.10) + 

Employing (3.8) to express L(")abm "+~ in terms of L(q)aO,,_~" one gets, after a 
little algebra, 

(1)rt, m- la=k®hab 2 L (q)abm-ln(I)q,nb " (3.11) 
n~lv l ,m- -  I <~n<~It 

By induction the proof is completed. The remaining statements are obvious. [] 

Definition 3.2. For R, q,/t and ~ as in Thm. 3.3, let Fh,,,u(~lR) be the unique 
element of ¢,~/'(2~, J l (k®h®Ad L) ) satisfying ( 3.5 ). 

By explicit calculation, one finds 

Fh,q,~,(~lR)q,m=(~t~u,m , melq, m>~ lt , (3.12a) 

Fh,,,u( OIR ),,m=Nh.,,u,mDh,~,,i,-m( R )O , rneIq, r e < p ,  (3.12b) 

where 

Nh,q.u.,,, = 1--I C)~+~ , (3.12c) 
n e l rt , rn <~ n <~ ,u -- I g t, -- h , n -- h 
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D h . , . j ( R ) = O  , 

Dh.u, 2 ( R ) = 0 2"b gu_h,u_  h_ | R,  

Dh,u,3( R ) = 0  3 q- (gU-h ,u-h- I  -b g~-h ,u -h -2  )RO- t -gu-h ,u -h- t  ( OR ) , 

Dh,u,4(R) =04+ (gu-h.u-h-I +g~,-h,u-h-2 +gu-h,u-h- 3) R02 

+ (2gu-h,u-h-l +g~,-h,u-h-2) (OR)O 

+gu-h,u-h-1( ( 02R ) + g u - h , u - h - 3  R2 ) , 

etc. (3.12d) 

These operators provide non trivial generalizations of the standard Bol operators 
[211. 

From the above, one deduces the following theorem. For any weT_~2 such that 
w>~ 0, let J(k  ®-~) denote the 2wth jet extension of k ®- ' ,  i.e., the holomorphic 
SL(2w+I,  C)-valued 1-cocycle defined by Oa"Oa=E2~oJ(k®-w)~hm"Ob"Oh, 
m=0,  1, ..., 2w for any q~eF(S, JC(k ®-~) ). 

Theorem 3.4. One has the direct sum decomposition 

AdL_-_ (~ L (~) 
r/E// 

Further, for any tl~ II, one has the holomorphic equivalence 

L (~)-~J( k ®-i.) . 

(3.13) 

(3.14) 

Proof Eq. (3.13) follows from (3.3)and (3.4)directly. Choose a holomorphic 
projective connection R. From (3.5), it is easily verified that, for any r/~H, 
~EF(~,  v', ~[ ( k ®-j") ) and meI~, 

2in 
Fo,nj,(OIR),,m= ~ ~U")(R)m"O"q), (3.15) 

n=O 

where, for wEZ/2 with w>~0, o~(W)(R) is a (2w+ 1 ) × (2w+ 1 ) invertible lower 
triangular matrix whose entries are differential polynomials in R. From (3.15 ), 
0 being arbitrary, (3.14) follows. [] 

3.3. Study ofF(S, (9(k®h®Ad L)) 

Theorem 3.5. Let cheF(S, (9 ( k®h®Ad L ) ). Then, in the expansion (3.2), one has 

q),,m=0, tleFl, m~I,, re>h,  (3.16a) 

~,h = O, rl~H, h e I ~ , j ~ > - h .  (3.16b) 
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Proof From ( 3.3 ) and ( 3.4 ), it follows that, if (~)q,m ---- 0 for m e In, m > n with n e I n, 
then ~, , . eF(Z ,  (9(k ®h-") ). On the other hand, F(27, (9(k ®h-~) ) = 0  if h<n, 
from the R i e m a n n - R o c h  theory [22].  From these properties, beginning with 
rn = j ,  and proceeding by induction, one can easily verify (3.16a).  If  h~I,, then, 
from (3.3) ,  (3.4) and (3.16a) ,  it follows that ~,,heF(27, (9( 1 ) ). Thus, q),,h is a 
constant c,,h [22].  Using (3.3) ,  (3.4)  and (3.16a) once more, one finds that, 
when h > - j , ,  ~ ,~_ l a = kab ( ¢I)q,h - I b - -  Cj+,lh - 1 C q , h  O b In kab ). If  C.,h were non zero, 

1 C + 1  - - I  - t ~ , , -  ~ C~.h) q~,.~_ ~ would be a holomorphic  connection of  the canonical line 
bundle k. These are known not to exist [ 22 ]. Hence, C,,h = 0. [] 

Definition 3.3. For any w6 7//2 with w >f 0, let { v~ ~) l i =  1, ..., d~} be a basis o f F ( S ,  
(9 (k  ®~) ). Further, let R be a holomorphic  projective connection. For any r/e/7 
and/zeI~ with either/z < h o r / z =  h = - i n  and any i =  1, ..., dh_ ~,, set 

(h) (h- / t )  F, t ,u , i (R)  =Fh,,l ,#(Vi IR) • (3.17) 

Theorem3.6.  For any holomorphic projective connection R, the set 
{2C~,~,(R) [rleH, lteI,  with either lz<h or lz=h= - j , ,  i= l, ..., dh_~,} is a basis of  
F(Z, (9(k®h®AdL) ). 

Proof. Since vJh-~) eF(T,, (9(k®h-") ), ~'(h) t R )eF(Z ,  (9(k®h®AdL ) ) (cf. ~ t l , / . t ,1  X ~ - 

Thin. 3.3). For  veNw {0}, let g~.eF(Z, @(k®h®AdL) ). L e t / / .  be the subset of  
/ / s u c h  that, for r/e// . ,  tP.~,m#0 for some meI~. For any r / J / . ,  let m.,~ be the 
largest value of  meI~ such that tP.~,m#0. By (3.16),  either rn.,~<h or 
m.,~ = h = -Jm From ( 3.3 ) and ( 3.4 ), it follows that ~.,~ - 
• .~ .... ,eF(Z,  @(k ®h . . . .  ,) ). Applying Thin. 3.3, one can construct an element 
Fh,~ ....  , (q ) . . . lR)eF(Z , (~(k®h®AdL))  satisfying (3.5) .  Set ~ . + ~ = t p _  

~n.  Fh,~ .... , (~).,~ I R ). Clearly, ~ .  + 1 e F(27, (9 (k ®h ® Ad L ) ). It is easily checked 
t h a t / / . +  ~ __//. and that, for r /e / / .+  i, m.+ 1.~ < m.,~. Using the procedure outl ined 
above, given any element cPeF(Z, (~(k®h®AdL)) ,  one can construct a finite 
sequence ~o, tPl . . . .  , ~ s +  1 of  elements of  F(Z, @ (k®h®Ad L)  ) and a finite se- 
quence H o , / / i ,  .--, Hs+  1 of  subsets o f  17 such that ~o = ~,  ~N+ 1 = 0  and {~= 
HN+ ~ __ H s  _~.-- _~ 17o. In this way, one reaches the representation 

N 
q~= ~ ~ Fh,. . . . .  . ( 0 p , r / l R )  • (3.18) 

p = O  r l e l - l v  

From here, it is obvious that the ~'~h~(R) span F(Z, (9(k®h®AdL)) ,  since @.,~ 
is expressible as a linear combinat ion of  the v~ h . . . .  "). Suppose that 
Y.~.~,,~c,,.,i]rt~!~(R)=O, where c, , . ,~C. Then, one also has for each r/s// ,  
~-,u,i (h) C~t,~,i~'~t,~,i(R)n,m = 0  for m~I.. Let ~ , .  be the largest value o f / t  in the sum- 
mat ion range. Now, by (3.5a) and (3.17) ,  (h) _V~h-~o.) ~l,p.o,,~,l( R )rl, lzo,,~- . Since the 
v! ~) are linearly independent  c.,,,,o..~ = 0 for all i. Let #1,. be the next to largest value 
o f #  in the summat ion  range. Proceeding as above, one shows that c.,~,,..,~ = 0 for 
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all i and so on. 

Theorem 3.7. One has 

dim F(Z, (9(k®h®AdL))= ~ 1+ 
q e  n , j q  • { - h , h  - -  1 ] t i e  Fl,jrl e l + h , j~ t  > m a x  { - h , h  - I } 

+ [dim F(27, ( 9 ( k ® ' / 2 ) ) - ~ ( l - l ) ]  ~ 1 
q ~ i T , j t l e Z + h +  1 / 2 , j ~  > m a x {  - - h , h - -  1 ] 

+I ~ (J" +h)2+ ~ (2h- l)(2J' + 1)1 
q ~ H ,  j t l  > m a x {  - -  h , h  - -  1 } q ~ l l ,  - h < j ~  <~ h - -  I 
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[] 

× ( l - l ) .  (3.19) 

Proof From Thm. 3.6, it follows readily from here that 

d imF(S ,  (9(k®h®AdL)) = ~ d imF(S ,  (9(1)) 
q ~ Fl, jrl = - -  h 

+ ~ d imF(S ,  (9(k®h-~')). (3.20) 
rl~ H ,  j t l  > - -  h , l . tE  lq , l~  < h 

The right hand side of ( 3.20 ) can be computed using that dim F(Z, (9 (k *h ) ) = 1, 
l and (2h - 1 ) ( l -  1 ), respectively, for h = 0, h = 1 and h >/3 [ 22 ]. The calculation 
is tedious but straightforward. [] 

3.4. Instability of the G-bundle L 

Recall that a holomorphic G-bundle P is unstable if dim F(S, (9 (Ad P) ) > 0. 
This implies in particular the existence of non trivial holomorphic gauge trans- 
formations of P, i.e., elements of the group F(Z, (9*(Ad P ) )  of holomorphic G- 
valued sections of Ad P. 

Theorem 3.8. The G-bundle L is unstable. 

Proof Indeed, from (3.19) with h=0,  it follows that dim F(Z, (9(AdL))  >0. [] 

3.5. Flatness and flat structures of L 

A holomorphic G-bundle P is said flat if it admits a flat form. Recall that a flat 
form of a holomorphic G-bundle P is a G-valued constant 1-cocycle T such that 
Tab= VaPa b Vb-  I for some holomorphic G-valued 0-cochain V. It can be shown 
that P is flat if and only if there is a holomorphic connection of P, i.e., a holo- 
morphic g-valued 0-cochain C such that Ca = kab ( Ad PabCb + ObPabPab- 1 ) [ 2 3 ]. 
Further, the flat forms of P are in one-to-one correspondence with the holo- 
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morphic gauge equivalence classes of holomorphic connections of P, where the 
action ofa  holomorphic gauge transformation 7eF(S, (9* (P)) on a holomorphic 
connection C is given by 7C= Ad yC+ 0W - l [ 2 3 ]. 

Theorem 3.9. The G-bundle L &flat. 

Proof This follows from Thm. 3.10 below. [] 

Definition 3.4. For any holomorphic projective connection R, let A (R) be a t- 
valued 0-cochain defined by 

A ( R ) a = ½ t + l  - -Ra t_ l  . (3.21) 

Theorem 3.10. For every holomorphic projective connection R, the 9-valued O-co- 
chain A ( R ) is a holomorphic connection of L. 

Proof Indeed, using (2.1) and the relation kab-'Oa2kab - I  - -  1 (Oakab-1 )2 : {Za, Zb}, 
it is straightforward to verify that 

A (  R )a = kab(Ad LabA( R )6 + O bLabLa6-1 ) , (3.22) 

showing the statement. [] 

One of the outstanding problems to be tackled is the description of the flat 
forms of L. I do not have a complete solution of this problem. The answer is 
expected to depend on the topology of the group G which the method used here, 
essentially based on Lie algebra theory, cannot probe. In spite of this, a number 
of results can be shown. 

Definition 3.5. An element ~ F ( 2 ? ,  (9 (Ad L) ) is said to be negative graded if 
is valued in 9 < o. A holomorphic gauge transformation ~,s F(X, (9" (Ad L ) ) is said 
to be negative graded if it is expressible as exp O for some negative graded ele- 
ment OeF(,F,, (9(AdL)) .  

Definition 3.6. A holomorphic connection C of L is said to be reduced if, for some 
holomorphic projective connection R, C - A  (R) is valued in ker ad t_ l, where 
A (R) is the connection (3.21 ). 

From (3.1), one can readily check that these notions are coordinate 
independent. 

Theorem 3.11. A holomorphic connection C of L is reduced if  and only if, for some 
holomorphic projective connection R, C is of the form 
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C = A ( R ) +  ~ og, t ,_j , ,  Og, eF(S, (9(k®J"+~)). (3.23) 
T/~H 

In that case, C admits the above representation for every holomorphic projective 
connection R. Hence, the set of  reduced holomorphic connections of  L can be iden- 
tified with the affine space A ( R ) + ~.~rI F( S, (9 ( k ®j"+ t ) ), the isomorphism de- 
pending on the choice of  R. 

Proof ker ad t_ ~ is spanned by the generators t ._ . .  with r/e//. Thus, C is reduced 
if and only if it is of the form (3.23), for some holomorphic projective connec- 
tion R. Now, C-A(R)eF(27,  (9 (k®AdL)) .  Using (3.3) and (3.4), one checks 
that o9.e F(27, (9 (k ®J. + 1 ) ). Finally, from ( 3.2 1 ), it appears that one can change 
R arbitrarily by redefining o90, where o~His defined in Section 2. [] 

Theorem 3.12. For every holomorphic connection C of L, there is a unique negative 
graded holomorphic gauge transformation ~' ce F(27, (9* ( Ad L ) ) such that the gauge 
transformed holomorphic connection C= ~'cC is reduced. 

Proof Pick a holomorphic projective connection R. For any holomorphic con- 
nection C of L, set 

I2(CIR) = C - A ( R ) .  (3.24) 

I2(CIR)~F(27, (9 (k®AdL)) .  If 7eF(X, (9*(AdL))  is a holomorphic gauge 
transformation, one has 

g2(yCIR) = A d  ~,g2(CI R) +OA(R)~7-~, (3.25) 

where 0A(R)= 0 -  ad A (R) is the covariant derivative associated to the connec- 
tion A (R) acting on F(27, (9 (Ad L ) ). For u e ~ ~ { 0 }, let £2. e F(27, (9 ( k® Ad L ) ) 
be of the form 

£2.= ~ og.t. _j. + (t.o.d. < - u / 2 +  1 ) ,  (3.26) 
qe  l I , jq  <<. v / 2 -  1 

where m, eF(27, (9 (k ®j"+' ) ) and the abbreviation t.o.d. < / ,  denotes terms of to- 
degree less than j,. From (3.3) and (3.4), it follows easily that, for ~/eH with 
j ,  e Z +  ( v -  1 ) /2  andj,>~ ( v -  1 ) /2,  Q . , _  (._ 1)/2 belongs to F(~,, (9 (k ®("+')/2) ). 
Applying Thm. 3.3, one can construct the following negative graded element of 
F(27, (9*(Ad L) ): 

y . = e x p (  X Fo,._(.+,)/e(O.,.IR.)),  
X, r l e l l . j q E Z  + ( v - -  1 ) / 2 d ,  t > ( v - -  I ) / 2  

2 
0 . . . -  C ~ - 1  g2.._(._1)/2, (3.27) 

in , --  ( v +  1 ) / 2  
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where R,  is any chosen holomorphic projective connection. Define 

12~+1 = A d  y~g2. + OA~R)~'vY.-1 . (3.28) 

Using the variational formula 

ead x 1 
&Xe-  X -  - -  ~X , 

a d X  

Eqs. (2.2a) and (3.21) and (3.5a), one finds 

a.+, =-l[t+,, E 
/ qeFl,  j q ~ Z  + (v - -  1 ) / 2 , j q  > (v-- 1 ) /2  

×Fo,,.-~.+ l )/z(O~,, [R.) ,  -~.+ l )/2t,,_(.+ l )/2] 

+ ~ 09, tn._j, 
qeFl,  jtt ~ v / 2  -- 1 

"~- E ~ v  r/,-- (v-- I ) /2  l q , _  (v-- 1 ) /2  
qeFI, jqe2~+ (v - -  I ) / 2 , j n  >/(v-- 1 ) /2  

+ ( t . o . d . < -  (v+  1 ) / 2 +  1) 

= ~, o g ~ t ~ , _ j ~ + ( t . o . d . < - ( v + l ) / 2 + l ) ,  
t l~H, j q ~  (v+  I ) /2 - -  I 

o9~=g2.~_~._1)/2, q J I ,  j ~ = ( v - 1 ) / 2 .  (3.29) 

Thus, g2.+ l is of the form (3.26) with v replaced by v + 1. From (3.16 ) with h = 1, 
every £2EF(L', ( 9 (k®AdL) )  is of the form (3.26) with v=0.  So, setting t20=t'2, 
one constructs a sequence ~o, Yi, ---, ~)N of negative graded holomorphic gauge 
transformations of F(S ,  d~*(Ad L)  ) and a sequence g2~, g22, ..., £2N+~ of elements 
o f F ( S ,  ( 9 (k®AdL) ) ,  where N = 2 j .  + 1, where j .  is defined in Section 2. From 
(3.26), J2N+~ is of the form 

g2u+, = E t a ,  t , _ j , ,  (3.30) 
q~17 

where to, eF(,X, (9(k ®j.+l ) ). Now, take g2=I2(CIR) and follow the procedure 
outlined above. Set 

Y C = ~ J N ? N - - I ' " ~ 5 0  • (3.31) 

Recall that g < o is a nilpotent Lie algebra and that, for a nilpotent Lie algebra, the 
Hausdorff-Campbell  formula holds with no restriction. From these facts, it fol- 
lows that ~'c is a negative graded element o f F ( S ,  (9" (Ad L) ). From (3.25) and 
(3.28), one has 

, .Q(~cCIR )=,-QN+ I • (3 .32 )  
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Hence, by (3.24) and (3.30), ycC is reduced. This shows the existence ofyc. Let 
Q,, £22~F(,S, (9(k®Ad L) ) be of the form 

t2i= ~ o)i,t~_s~, (3.33) 
r/e/7 

with o)i,eF(.S, (9(k®s"+~)) and let y be a negative graded element of F(S, 
(9*(Ad L) ) such that 

g22 = Ad yl21 + OA(mW - t ( 3.34 ) 

~' can be written in the form 

y = e x p O ,  (3.35) 

where O is a negative graded element of F(X, (9 (Ad L) ). Combining ( 3.33 ) and 
(3.34) and using the variational formula 

ead x 1 
&Xe- X-  - -  6X , 

a d X  

one finds 

[eXPa_d_oad O -  1 ] ad t_ ,  i_ (0A(R)O-- [t2,, O1) = 0 .  (3.36) 

For any meZ/2,  let rCm be the projector on 0m along O~,m. Since O is negative 
graded, rtmO=0 for any me;~/2 with m>~0. Suppose that nmO=O for all meal2  
such that m > n where n eZ /2  with n < 0. By grading reasons, recalling (3.21), 
(3.36) yields 

0 = - ~ [ t _ l ,  [t+~, ~ O ]  ] + ( t . o . d . < n ) .  (3.37) 

Using that ad t+ 1O c~ ker ad t_ 1 ~--- { 0 }  and that O<0 c~ ker ad t+ 1 = {0}, one con- 
cludes that n ,O=0 .  Proceeding by induction, one shows that ztmO=0 for every 
m. Thus, O = 0  and 7= 1. Now, let y~ and Y2 be two negative graded elements of 
F(X, (9 * ( Ad L ) ) such that 71C and 72 C are both reduced. Setting t2, = ~ ( ysCI R ) 
and ),=y2yi -~ above, (3.33) and (3.34) hold. So, ~1 =~2. This shows the unique- 
ness of Yc. [] 

Theorem 3.13. Let 76 F( Z, (9* (Ad L) ) be of the form y= exp O for some O6 F( Z, 
(9 (Ad L) ). Then, y maps the space of reduced holomorphic connections of L into 
itself if  and only i f  O= c for some constant element c6 %. 

Proof To begin with, one notes that, for any ce%, the 0-valued 0-cochain O de- 
fined by Oa=C belongs to F(Z, (9(AdL)) ,  as follows easily from (3.1). Con- 
versely, from (3.3) and (3.4) and the fact that the only holomorphic functions 
on Xare the constants [22 ], one easily shows that, if OeF(Z,  (9 (Ad L) ) is valued 
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in c,, then O = c  for some constant element cec~. For c~c~, 
ad c ker ad t t ~_ ker ad t 1. So, if O= c for some constant element ce c~, ), maps the 
space of reduced holomorphic connections of L into itself. This shows suffi- 
ciency. Let Ol, t22eF(27, (9 (k®AdL))  be of the form (3.33) and suppose that 
(3.34) holds for some holomorphic projective connection R. Then, (3.36) holds 
as well. Let rt,~ be defined as below eq. (3.36). By (3.16), rtmO=6m,OC for meZ/ 
2 with m >/0, for some constant element ce c~. If ~ZmO= ¢5m,0C for m e 7//2 such that 
m >  n where neZ/2 with n<0 ,  then, from (3.21) and (3.36), one gets 

[ exp a d c - 1  (Oc-[I21,c]-½[t+~,rt, O])+(t.o.d.<n+l)] 0=  t_i,  adc  

1 [  exp a d c - 1  [t+,,n,O]]+(t.o.d.<n). (3.38) 
= -  ~ t_l,  adc  

Here, I have used that c is constant and that ( expadc-1) t2~  is valued in 
ker ad t_ ~. The latter property follows from the fact that g2~ is valued in ker ad t_ 
and the already mentioned invariance of ker ad t_ 1 under ad c. Reasoning as done 
below eq. (3.37), one can show that this relation entails that ~t,O= 0. Proceeding 
by induction, one concludes that nmO=(~m,OC for any meZ/2. Thus, O=c. If C~ 
and C2 are two reduced holomorphic connections of L such that ~,C~ -- C2, then 
£2i=t2(CilR) fulfill the above assumptions. So O=c. This shows necessity. [] 

4. The Drinfeld-Sokolov-Krichever-Novikov spaces and their properties 

In the first part of  this section, I shall review briefly the main properties of the 
Krichever-Novikov (KN) spaces, which play an important role in the geomet- 
rical framework expounded below. In the second part, I shall introduce the 
Drinfeld-Sokolov-Krichever-Novikov (DSKN) spaces, describe their standard 
bases and study their symmetries. 

Remark. Throughout this section, the following assumptions are made. 27 is a 
compact connected Riemann surface without boundary of genus 1>~ 2. k ~1/2 is a 
fixed theta characteristic, h is a fixed element of Z/2. G is a simple complex Lie 
group. S is an SL(2, C) subgroup of G. 

4.1. The standard KN theory 

The basic ingredients of  KN theory are the following: 
(i) a finite subset zl of  27 such that I AI >t 2 divided into two disjoint subsets Ain 

and Aout such that lain I >1 1 and I dout [ >t 1; 
(ii) an element ofp  o f F ( S ,  J / ( k )  ) holomorphic on S \ A  with a simple pole of 
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positive (negative) residue at each point ofA~, (Aou t ) and imaginary periods. 
To avoid complication with the Riemann-Roch theory, the points of A will be 
assumed to be in general position [ 7,24 ]. 

Chosing a base point P o e S \ A ,  set 

P 

t ( P ) = R e  y p .  
Po 

(4.1) 

t is a single-valued harmonic function on X \ A  with the property that t ( P )  --, - 
( + ~ )  when P approaches a point of  Am (Aout) [7,24]. So, t defines a notion of 
euclidean time on X. For any z ~ ,  the subspace o f S o f t i m e  z is 

C, = {P IPeS \A ,  t ( P )  = z}. (4.2) 

C, is a disjoint union of  simple loops in Z'\A for all but finitely many critical 
values of r, whose number is bounded by 2 l -  2 + [A ]. The critical values corre- 
spond to processes of  topological reconstruction in which either one loop splits 
into two or more, or two or more loops merge into one. The points of Xwhere the 
reconstruction occurs are precisely the zeros of p and the number of loops in- 
volved equals the order of the zero plus 2. For any two Zl, z 2 ~ ,  C,, is homolo- 
gous to C~ in X \ A .  Hence, for any toel-'(X, J C ( k )  ) with poles contained in A, 
~c~O9 is v-independent. 

The KN space KNh(A) of  weight h is the set of the elements ofF(X,  J / ( k  *h ) ) 
whose poles are contained in A ~. KNh(A) is an infinite dimensional complex vec- 
tor space. 

There exists a bilinear pairing of the spaces KNh (A) and KN ~ _ h (A) defined by 

(q/, q~) = ~-~n/0~, , (4.3) 
Cr 

for any 0~KNh(A) and ~,EKN~_h(A). Note that the integration is well-defined 
and independent of ze ~. 

The space KNh(A) possesses a standard basis, the generalized KN basis. To 
describe this, set r=  lain I, s =  I Aout I and ph=p~ _~ = h -  [h ] mod 2v. The basis is of 
the form {V}hu) l i=  1 r, N62eq-ph }. The basis elements "t~) • , ..., ",.U are characterized 
up to normalization by their zero order at the points A. Let Am = {P,I 1 ~<j~< r} and 
dout={Pj lr+ 1 <~j<~r+s}. Then, 

o r d v ! h u ) ( P j ) = a j ( N + l - h ) - ~ j . , + ( 2 h - - l ) ( l - l ) ~ , , r + ~ + b j . u ,  (4.4a) 

where 

In a different definition, also essential singularities at the points o f  A are allowed. 
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1 , 1 <~j<~r, 
aj= -- 1 , r+ 1 <j<~ r + m i n ( r ,  s)--  1 , (4.4b) 

- - ( [ r - - s l+ l ) sgn ( r - - s ) ,  r+min(r ,s)<~j<<.r+s,  

and the b/.u are rational numbers such that 

rd-s 

Z bj, u = 0 ,  [b / , u [< l ,  bj, u = 0 ,  l < ~ j < < . r + m i n ( r , s ) - - l ,  (4.4c) 
j=l 

depending on j and N. These statements about bj.u must be amended for finitely 
many values of N when h takes the exceptional values 0, ½ for an odd theta char- 
acteristic and 1. See ref. [24] for a detailed treatment of this matter and refs. 
[25-28 ] for related approaches to the subject. 

The relative normalization of the elements of the KN bases of KNh(A) and 
KNI_h(A) can be chosen so that 

. , ( l-h) ,,(h) vi, M , ~ , j , N ) = ( ~ i , j 6 M , _ N ,  i , j = l , . . . , r ,  M , N ¢ Z + p h .  (4.5) 

The Laurent theorem generalizes and one gets the expansion 

0 =  ~ ~ ,4, u(h) ,,(l--h) 
V'Ii,N i , - - N ,  (~i,N = <t.,i, N , q~> , (4.6)  

i=  1 N ~ Z + p h  

the series containing only a finite number of non vanishing terms [23 ]. Eqs. (4.5) 
and ( 4 . 6 )  imply further that the pairing ( 4 . 3 )  is non singular and that the spaces 
KN h (A) and KN l - h (d) are reciprocally dual. 

The basic symmetry group of the KN theory is the conformal group Confo (A), 
i.e., the group of holomorphic diffeomorphisms f o f  27\A onto itself with holo- 
morphic inverse having finite order singularities at the points of A and homotopic 
to idr. Its Lie algebra is Lie Confo(A) =KN_ l(A). The Lie brackets are given by 

[u, v] =uOv--vOu , (4.7) 

for any two u, w L i e  Confo(A). 
Confo(A) acts on the KN spaces KNh(A). For anyfeConfo(A) and 0¢KNh(A), 

the action is defined by 

f*Oa =k®h(f)abOb of-  (4.8) 

Here, 

k®l/2OC)ab ---- ( O afb )1/2 , (4.9) 

where the branch of the square root is chosen so that 

k®l /2( id2  )ab ----k@l/2ab , (4.10a) 

k®l /2 (go f )~c=k®l /2 (J )abk®l /2 (g )bcOf  , (4.10b) 

f o r f  ge Confo (A).  k ®h ( f )  = k®l/2 ( f )  ® 2h, by definition. At the infinitesimal level, 
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(4.8) reduces into 

OuqJ=uOO+h(Ou)q) (4.11 ) 

for any ueLie Confo(A). The KN pairing (4.3) is invariant under Confo(A): 

( f*q / , f *O)  = ( ~, q~), (4.12) 

(0,~', 0 )  + (~,  0,~) = 0 ,  (4.13) 

for anyfeConfo(A),  ueLie Confo(A) and any ~eKNh(A) and ~,e KN~ _~(d). 

4.2. The DSKN spaces 

Definition 4.1. The DSKN space DSh(A) of weight h is the set of the elements of 
F(X, ~ ' (k~h®Ad L) ) whose poles are contained in d. 

DSh (A) is an infinite dimension complex vector space. 

Definition 4.2. For any (I)~DSh(A) and W~DS~ _h(A), set 

(~P, ~ )  = ~ (q~, ~ ) .  (4.14) 
Cr 

Note that the integration is well-defined and independent of re ~. Eq. (4.14) 
defines a bilinear pairing of the spaces DSh(A ) and DSt_h(A), called the DSKN 
pairing. It is the appropriate generalization of the customary KN pairing in the 
present context. 

4.3. The DSKN bases 

The space DSh(A) admits standard bases. To construct them, one needs the 
following result. 

Recall that a meromorphic connection to of k on X is a meromorphic 0-cochain 
{ton} on Zsuch that toa = kab(tob +0b In k~) .  

Definition 4.3. Let to be a meromorphic connection of k on S whose poles are 
contained in A. Let further r/~H, ~ I ~  and ¢~KNh_a(A). One sets 

Qh,,,, (~ I to) =exp(  - t o a d  t_l )q~t,,,,. (4.15 ) 

Theorem 4.1. For any meromorphic connection to o f  k on X whose poles are con- 
tained in A and any rle H, It~ 17 and 0 ~ KNh _ i1 (A), Qh,,,u ( 01 to) ~ DSh ( A ). Further, 
Qh,,.u( OI to) depends linearly on q). 
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Proof Indeed, using (2.1), one has 

exp( --07a ad t_ l )t,,u =k®U~bAd L~b (exp ( --076 ad t_ l ) t,,u) • (4.1 6) 

From here, the statement is obvious. [] 

Definition 4.4. Let 07 be a meromorphic connection of k on 27 whose poles are 
contained in A. For any r/sH, #~I, ,  i=  1, ..., r and N~Z+ph, set 

(h) __ t ') / , , ( h - - u )  ~"~l, lt,i,N( 07)  107) ( 4 . 1 7 )  - -  t~h,r/,.u I, Vi,N 

Theorem 4.2. Let 07 be a meromorphic connection o f  k on X whose poles are con- 
tained in A. Then, the set {7"~hu)i,N(07) IqeH, ltsI~, i= 1 .... , r, Ns7- +ph} is a basis 
o fDSh(A) .  The basis elements satisfy the relation 

( I - h )  07 , , -  (Y'n,u.,.M( ), ]c~h~!j,N(07)) =N.di,,A-- 1 )J"-UJu,_.8,j8 M N, 

q ,~eH,  l t~ I . , v~ I¢ ,  i , j = l , . . . , r ,  M, N s Z + p h .  (4.18) 

Finally, for any @~ DSh ( A ) , one has 

q>= 2 ~ r, ~h , q~,.~,,,,N(07)Y'~,-~.;,-N(07), 
tl~lT, lz~l, 1 i= l N~Z+ph 

( l - - h )  )jr/--/~ *q, lt, i,N(07 ) = (~rl ,  u,i,N(07), cb) /m, (  - 1 , (4.19) 

the series containing only a finite number o f  non vanishing terms. 

Proof Let ~ D S  h (zJ).  Following a procedure totally analogous to that leading to 
(3.18 ), one shows that 

K 

~ =  ~ ~ Qh,. .... .(0~..107), (4.20) 
v=O q~Hv 

where K is some non negative integer, H~ is a subset of H and ¢~,,e K[qh . . . .  q(A) 
for each v and r/. Each ¢~,, is given by a series of the form (4.6). Hence, the 

,,u.i,u(07) span DSh(A). The linear independence of the :F (h) t07~ is ecluiva- ~l,l.t,i,N~, 1 
lent to that of the fields v!~? t,,~,, which is obvious. ECl. (4.1 8 ) is a straightforward 
consequence of (4.14), (4.5) and (2.10). ECl. (4.19) follows from the represen- 
tation (4.18) and from (4.6). [] 

Theorem 4.3. The pairing (4.14) is non singular. Therefore, the spaces DSh(A) and 
DSI_h(A) are reciprocally dual. 

Proof This follows directly from (4.19) and (4.20). [] 
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4.4. The symmetries o f  the DSKN spaces 

There exists a natural extension of the action of Confo(A) to the DSKN spaces. 
This leads to the following result. 

Theorem 4.4. Confo ( A ) acts on the space DS h (,d ) by setting 

f *~I)a =k®hOOab Ad  LOOab Cl~b O f (4.21) 

for arbitrary f e Confo ( A ) and Oe DSh ( A ) , where 

L(f)ab =exp( --2 In k®~/2(f)abto) exp( O~k(f)ab-It_ ~ ) • (4.22) 

At the infinitesimal level, (4.21) can be written as 

OuO=UOAtR)O+h(Ou)O+ [L(uIR) ,  O ] ,  (4.23) 

for any ue Lie Confo (A), where R is a holomorphic projective connection and 

L(  u lR ) = [½t+, - O t o -  ( 02 + R )t_, ]u , (4.24) 

0A ( R ) = 0 -- ad A ( R ) being the covariant derivative o f  the connection A ( R ) defined 
in (3.21). L ( u l R ) e DSo ( A ) and L ( u l R ) satisfies the equation 

O A ( R ) L ( u l R ) = - - D , ( R ) u t _ , ,  D I ( R ) = O 3 + 2 R O + ( O R ) ,  (4.25) 

where DI ( R ) is a Bol operator [21]. 

Proof From (4.10a), it is easily verified that 

L ( idz  ) ab =Lab.  (4.26a) 

From (2.1) and (4.10b), one verifies further that 

t(go)C)ac = t ( f ) a b t ( g ) b c O f  , (4.26b) 

for a n y f  g~Confo(A). Using (4.10) and (4.26) in combination, it is straightfor- 
ward to verify that the right hand side of (4.21) belongs to DSh (d). The remain- 
ing statements are straightforwardly verified. [] 

Note that 0uO is independent of R. R is introduced only in order that the var- 
ious contributions appearing in its expression have nice covariance properties. 

Theorem 4.5. The pairing (4.14) is invariant under Confo(zl). In fact, one has 

( f * ~ , f * O )  = ( ~, O ) ,  (4.27) 

(0 ,~ ,  O) + ( ~, 0 ,O)  = 0 ,  (4.28) 

for anyfeConfo(d) ,  ueLie Confo(Zl) and any OeDSh(A) and ~eD$1 _~(d). 
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Proof The verification is straightforward. [] 

Denote by Gauo(A) the group of gauge transformations y~F(X\d,  J¢* (Ad L) ) 
with finite order singularities at the points of A and homotopic to the identity. Its 
Lie algebra Lie Gauo (A) is DSo (A) with Lie brackets 

[,E, A ] = [e(~E), e(A ) ] ,  (4.29) 

for any two Z, A~Lie Gau0(A), where in the right hand side e is the evaluation 
map at a given point of X \ A  and the Lie brackets are those of~. 

Gauo (A) acts on the DSKN spaces by means of the adjoint representation, as 
summarized by the following theorem. 

Theorem 4.6. Gau0 ( d ) acts on the space DSh ( A ) by setting 

y~=Ady@ (4.30) 

for arbitrary ye Gauo (A) and cb~ DSh (A). At the infinitesimal level, (4.30) becomes 

d~.-~= [~, ~ l  (4.31) 

for any -- Lie Gauo. 

Proof The verification is straightforward. [] 

Theorem 4.7. The pairing (4.14)/s invariant under Gau0(A). In fact, one has 

(y~, yq~) = ( 7 t, q~), (4.32) 

(~s~,  q~) + ( ~, ~ )  =0 (4.33) 

for any y~Gauo(A), .E~Lie Gauo(d) and any @¢DSh(A) and ~DSI_h(A) .  

Proof. This verification is also straightforward. O 

Note that the total symmetry group is the semidirect product 
Confo (A)XGauo (A), where the product is defined by (f~, Yl ) 0 (f2, Y2 ) = (f~ ofz, 
ytf~-l*y2), for f~, f~Confo(A) and Yl, y2~Gauo(A). The action of the first and 
second factors are respectively right and left. 

5. The Poisson manifold ( ~ / ,  {.,  • },~) 

In this section, I shall introduce a Poisson manifold (W, {., .}~) which is closely 
related to the customary Kac-Moody phase space, though its geometry is in some 
respects quite different. In fact, the construction uses the DS bundle L and the 
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DSKN spaces in an essential way. 

Remark. In this section, S is a compact connected Riemann surface without 
boundary of genus I>~2. G is a simple complex Lie group. S is an SL(2, C) 
subgroup of G. 

In the application of the KN theory below, zl consists of just two points P+ and 
P_ in general position, di, and Aou t contain respectively the point P_ and P+. p is 
the unique element o f F ( S ,  J / ( k ) )  holomorphic on S\zJ  with a simple pole of 
residue + 1 ( - 1 ) at P+ (P_)  and imaginary periods. 

To lighten the notation, the dependence of the functional spaces encountered 
below on d will be omitted. 

The relevant space of the construction is 

W = D S l ,  (5.1) 

that is the DSKN space of weight 1. W is an infinite dimensional complex vector 
space and, thus, also an infinite dimensional holomorphic manifold. The relevant 
function space on W is the space ~ (W) of differential polynomials on W. W can 
be endowed with a Poisson structure depending on the parameter x ~ C \  {0} and 
supported on ~ (W).  The Poisson structure is completely defined by assigning 
the Poisson brackets of  the linear inhomogeneous functionals on W. The Poisson 
brackets of general elements of ~ (W) are obtained by enforcing the Leibniz rule. 
This leads to considering the dual space W v of W. Under the non singular DSKN 
pairing (4.14), one has the identification 

W " = DSo. ( 5.2 ) 

Therefore, every linear functional on W is of the form 

2x(W)=(X,  W) , W~W, (5.3) 

for some Xe W v. Note that W v has an obvious structure of Lie algebra. 
For any X, Y~ W v and any a, b~C, the Poisson brackets of  the inhomogeneous 

linear functionals 2 x+  a and ;t r +  b are given by 

{2x+a,  2r+b},~=2[x,r] +x)c(X, Y),  (5.4a) 

x(X, Y) = (X, OA Y>, (5.4b) 

where A is the holomorphic connection of L given by (3.21 ) for some holo- 
morphic projective connection R. R will be fixed once and for all in the following. 
So, the dependence on R will be understood below, to simplify the notation. 

It is straightforward to verify that the Poisson brackets {., .}~ are bilinear, an- 
tisymmetric and satisfy the Jacobi identity as they should. In fact, one easily checks 
that X is a Lie algebra l-cocycle of W v. X depends on the choice of R, but changing 
the choice alters X by a trivial l-cocycle. Z is singular, since z(X, Y) = 0 identically 
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whenever either X or Y are constant elements of % 
The above Poisson structure provides the proper geometric definition of Kac- 

Moody phase space in the present context. The level and the Kac-Moody current 
correspond to - x and xA + W, respectively. 

Next, one has to consider the symmetries of the Poisson manifold W. These 
are given by suitable deformations of the conformal and gauge symmetries intro- 
duced in Section 4. 

Consider Confo. For anyfcConfo, one has that x(f*X,f*Y) =z(X, Y) - x (  [X, 
Y], A - f -  ~*A ), where for fe Conf0, f*A = OL (f) L (f) - ~ + O fAd L (f)A o f  and X, 
YeW v. Because of the non invariance of X, the action of Confo on W, defined by 
(4.21 ), is not Poisson: it does not leave the Poisson brackets invariant. However, 
there is a deformation of the action enjoying this property. Set 

(f*W)~=f*W+~c(f*A-A),  WeW. (5.5) 

The deformation induces an action of Confo on ~3 (W). It is sufficient to consider 
the action on the functionals 2x+ a, Xe W v, ae C, which is given by 

(f* (2x + a) )K(W) =2x(  ( f - ' *  W)~) + a  

= 2 y . x ( W ) + a + x ( X , f - l * A - A ~ ,  WeW. (5.6) 

From (5.4) and ( 5.6 ), it follows that the action ( 5.5 ) is Poisson. 
At the infinitesimal level, (5.5) and (5.6) become 

(0. W)~ =tcoAL(u) +0. W, (5.7) 

(O,(2x+a))~(W)= -2x((O,W)~)=2o, x (W)+x(L(u) ,  OAX) , (5.8) 

where ueLie Confo and L(u) is given by (4.24). The action is Hamiltonian. In 
fact, using (5.4), it is straightforward to verify that 

(O,(2x+a))K = { T,, 2x +a}~, (5.9a) 

T,(W)=(1/2x)(uW, W)+(L(u ) ,  W) , WeW, (5.9b) 

the Hamiltonian functions 7", being elements of ~ (W). Tu can be written as 

T , ( W ) = ( u , T ( W ) ) ,  WeW,  (5.10a) 

T(W) = (½t+~ +Oto - (02+R)t_~, W) + (1/2x) ( W, W).  (5.10b) 

Using ( 3.1 ) and (2.1) and (2.9), it is straightforward albeit lengthy to check that 
T(W) e KN2. So, the map We W-* T(W) e KN2 is the moment map of the Hamil- 
tonian action. 

For any 7eGauo, one has that x(TX, 7Y) =x(X, Y) - ( [X, Y], 7-'0~7>. So, the 
ordinary action of Gauo on W, defined by (4.30), is not Poisson. However, in 
this case too, there exists a deformation of the action enjoying such property, 
namely 
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(yW) ,~=yW+xOA?7- ' ,  W ~ W .  (5.11) 

The deformation induces an action of Gauo on the funetionals 2x+a,  X~W v , 
a~C: 

(y(2x + a) )K(W) =2x(  (~,- ' W)~) + a  

= 2 r x ( W ) + a + x ( X ,  OA),-~ ,) , W o W .  (5.12) 

By combining (5.4) and (5.12 ), one verifies that the deformed action thus de- 
fined is Poisson. At the infinitesimal level, (5.11 ) and ( 5.12 ) become 

(6zw)~=azw+xo A3, (5.13) 

( d z ( 2 x + a ) ) ~ ( W ) = - 2 x ( ( d z W ) ~ ) = 2 ~ z x ( W ) + x ( 3 , 0 A X )  , (5.14) 

where ~ L i e  Gauo (cf. Eq. (4.31)) .  From (5.4) and (5.14), one has 

(dz(2x + a ) ) ~  = {Jz, 2x +a}~,  (5.15a) 

~ ( w ) = ( ~ ,  w ) ,  w~w. (5.15b) 

Note that JzE ~ (W).  From here, it appears that the deformed action of Gau0 on 
W is Hamiltonian with respect to the Poisson structure (5.4), the Hamiltonian 
functions being the Jz. Jz can trivially be written as 

J z ( W ) = ( ~ , J ( W ) ) ,  W ~ W .  (5.16a) 

J ( W )  = W .  (5.16b) 

So, the map W~W-oJ(  W)~W can be identified with the moment  map of the 
Hamiltonian action. 

By a straightforward calculation, one obtains 

{ Tu, T,. }K = T~ ,.~ 1 + 12X(to, to )a( u, v ) ,  u, w L i e C o n f o ,  (5.17a) 

where 

a(u, v )=  - ~ ( u ,  D~v) , (5.17b) 

is the KN 1-cocycle and D~ is given in (4.25). The proof of (5.17) uses (5.4), 
( 5.9b ), ( 2.9 ) and the following two relations: 

uO ~L(v)-rO lL(u) + [L(u), L(v) I=L( [u, vl), (5.18) 

)C(L(u), L(v)  )= - (to, to)(u, D, v) , (5.19) 

which are easily verified using (2.1) and (4.24), (4.25). (5.17) is a Poisson 
bracket Virasoro algebra of central charge 12X(to, to). This is the well-known value 
of the classical central charge encountered in the theory of classical W-algebras 
[ 1,9-13 ]. The moment  map T(W) ,  Eq. (5.10b), is the energy-momentum ten- 
sor. In the usual approach [ 9-13 ], the central charge originates from an improve- 
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ment  term added to the Sugawara energy-momentum tensor of Kac-Moody the- 
ory in order to maintain conformal invariance upon carrying out the Hamiltonian 
reduction of the Kac-Moody phase space. The first and second contributions in 
expression (5.9b) of Tv correspond more or less to such terms in the present 
formulation. Here, however, the improvement  term is yielded ab initio by the 
nature of the DS vector bundle and the action of the conformal group of Z\A. 
The second derivative term appearing in expression (5.10b) of T(IV) has a 
counterpart in the usual approach where it is added ad hoc after the reduction of 
the phase space [ 9-13 ]. Here, it is present from the beginning and it is strictly 
necessary to ensure the correct transformation properties of T(W)  under coor- 
dinate changes. 

From (5.4) and (5.15b), one gets 

{J---, JA}~ =Jtz,A] +xX(E, A) ,  E, A~Lie Gauo,  (5.20) 

(5.20) is a Poisson bracket Kac-Moody algebra of level-x. The moment  map 
J(IV),  Eq. (5.16b), plays here the role of the Kac-Moody current. 

From ( 5.4 ), ( 5.9b ) and ( 5.15b ), one also has 

{T~,Jz}~=Jo~+Kz(L(u),Y,), u~Lie Confo, ~ Lie Gauo. (5.21) 

Hence, the current J(IV) transforms as a primary field under Poisson bracket- 
ting, except for the component  corresponding to the generator t+~ of 9 (see Eqs. 
(4.25) and (5.4b)) .  This also is familiar in the theory of classical Iv-algebras 
[9-12].  

It is interesting to write the Poisson bracket algebra in modes. One uses the KN 
{v~,~ ) } and the DSKN bases {)~,(h~)u,N(to) } introduced in Section 4, where to is a 
meromorphic connection of k holomorphic on X\J.  In this case, r being 1, one 
can suppress the index i. To simplify the notation, the dependence on to will be 
understood. Set 

re=rye-,), (5.22) 

J, l uM=Jr (o )  (5.23) 
, , r / , / c M  ' 

for P s Z  and ~/~H,/z~I~ and M~Z+pj~. Then, (5 .17)- (5 .21)  yield the following 
algebra: 

{Tp, Te}K= ~ C~,-l)~2-~)f_l)TR--X(to, to)~-l)~2 -l) , (5.24) 
R ~ Z  

= ~ ~ Fn¢¢(J,,ll;j¢,vlj¢,lz+v ~r(-a)(-~)L J , ] d  M N ( - - a - - x )  ~ , l Z + v , L  

+ xN~ J, ,~ - 1 )s~-a [ _ ½ C+~ Ja+ ~+,,OJM+ N,O 
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+ C)7,~(iu+.-1.oq(M - '+ ' )  (N-- ") +(fu+ "( ')(--  ") ,,O,tM N ] ,  (5 .25)  

{ Te, J,.,.N }K 

- - l  - - ) ( N - - V ' ) ~ - - V +  ) J q ,  v - l , L ]  -- -- Z [c~-l)(u-")~-')J, , ' . t ,--CJ,,"g~ l 
LEZWpjq 

+ 2w2X( to, to)¢},-')(U-'' 5,,oa,,, , (5.26) 

for P, QeZ and q, ~11,  l teI, ,  v~I¢, M ~ Z  +pj, and N~Z +ps¢. Here, 

c ( m ) ( n ) L  M u (I+,,+,)=(--mv(Mm)®OV(u')+nV(N')®OV(Mm),v(----zm--')), (5.27a) 

f (m) (n) l(m+n ) --__ (1)(Mm) ®l)(n), U( l -m-n)  -L ) ,  (5.27b) 

g(m)(.)t.  =(OroO~V(Mm)®V(N "), V(~ ~ - ' - ' )  ) (5.27C) M N ( r e + n + 2 )  -- , 

for m, n e Z / 2  and M~Z+pm, N e Z + p .  and L e Z + p m + .  and 

( -1)  = (y(M--I), n l  y~ -1) ) ~}'-') o , (5.28a) 

~ ( - - m )  ( m )  (Z)(M - m )  , O~,V(u ") ) (5.28b) M N ~ 

q~t-' - - m )  (N m )  = ( ( R  - -  RtT7) ® / ) ( M  - 1  - m ) ,  U(N m)  > , ( 5.28c ) 

for P, Qe Z and m e Z/2 and M, Ne Z +p,,. oe H, F,,¢ ¢ and iV, are defined in Section 
2 (cf. Eqs. (2.3) and (2.10)). Dt is defined in (4.24). 0o is the covariant deriv- 
ative of the connection ~. 0o, q~= (O-mo~)~  for ~eKNm. R~, is the meromorphic 
projective connection associated to ~.  R~ = 0 t~ -  ( 1/2 )iv 2. Assume now that the 
poles of the meromorphic connection ~ are simple. Then, the structure constants 
f ( , . ) ( . ) L  C(Mm)(N.)L ..(m)(,,)L U N ( r e + n ) ,  ( l + m + n )  and 5 M  N ( r e + n + 2 )  vanish unless 
0 ~< L - M -  N~< l, 3l, 5l, respectively, whenever the values of the weights, written 
within parentheses, do not take the exceptional values 0, ½ for an odd theta char- 
acteristic and l, while they are non zero only for finitely many values of L - M - N  
for the exceptional values of the weights. Similarly, AM'U' ( -- m )  N ( m )  , t/Ma ( -- 1 -- m ) N (") and 

( - ~ ) (- t ) vanish unless 0 ~< - M -  N~< 2l, 4l, 6l, respectively, for non exceptional M N 

values of the weights, and are non zero only for finitely many values of M +  N for 
the exceptional values of the weights. The calculation yielding the above formula 
uses (2.1), (2.2), (2.3) and (2.10) and (3.21) and is straightforward. 

6. The reduction of the Poisson manifold (W, { -, • },,) 

To obtain the classical W-algebras in the above framework, one has to impose 
a suitable set of  first class constraints on the Poisson manifold (W, {., "}K) and 
then fix the gauge to reduce it. This is the subject of  this section. 

Remark. In this section, 27, G, S, d and p are defined as in Section 5. 
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The constraints imposed are linear. Their general form is 

J z ~ 0 ,  ~EX,  (6.1) 

where X is some subset of  Lie Gauo and ~ denotes weak equality. Such con- 
straints are essentially of the same form as those used in Ref. [ 10] once one re- 
calls that in the present formulation the counterpart of the Kac-Moody current 
is xA + J ( W ) .  To implement the reduction of (W, {-, .}~), one demands that the 
constraints are first class. From (5.20), this yields the condition 

[~,A]EX and Z ( , ~ , A ) = 0 ,  3 ,AEX.  (6.2) 

One also requires that the constraint manifold is invariant under the action of 
Confo. From (5.21 ), this yields the condition 

0u~EX and z (L(u ) ,~ )=O,  uELieConfo,~EX. (6.3) 

A maximal subspace of  X of Lie Gauo satisfying (6.2) and (6.3) is obtained as 
follows. The treatment given here follows very closely that ofRef. [ 10]. Consider 
the 2-form we A 2g v defined by og(x, y)  = (t+ L, [x, y] ), x, yEg. The restriction of 
such form to g_ 1/2 is non singular. By the Darboux theorem, there is a direct sum 
decomposition g_ i/2 = P-~/2~q-1/2 into subspaces of g_ 1/2 which are maximally 
isotropic and dual to each other with respect to 09. Set 

r=g~  -1 ~P-1 /2 ,  (6.4) 

which is a nilpotent subalgebra of g. Then, one has 

X= {ZI~ELie Gauo, ~va lued  in r}. (6.5) 

This follows straightforwardly from (5.4b), (4.24), (4.25), the isotropy of 
P- 1/2 with respect to 09 and the gradation of g by to. From the theory developed 
in Section 3, it is not difficult to see that the condition of valuedness in r is com- 
patible with changes of trivializations of L. 

The constraint manifold Wconstr is given in terms of the orthogonal comple- 
ment r ± of r with respect to the Cartan-Killing form 

r ± =g~o @ad t+ l P- i/2, (6.6) 

and is explicitly given by 

Wconstr = { W[ WEW, Wvalued in r I }. (6.7) 

Here too, one can show that the condition of valuedness in r ± is compatible with 
changes of trivializations of L. 

From (4.23), (4.24) and ( 5.7 ), it follows that, for u e Lie Confo and We Wcnnstr, 
(OvW),~E Wconstr. Thus the constraints are compatible with the action of Conf0. 

From (4.31) and (5.13), it follows that, for ~ X  and WsW ... .  tr, 
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(~W)~eW¢o,s~r. The gauge symmetry, associated to the first class constraints 
(6.1), must be fixed. The following can be shown. 

Theorem 6.1. For any WeW~o,~t~, there exists a unique element Owe X depending 
polynomially on W, R and their derivatives and such that 

ad t_, (exp Ow W)~ = 0 .  (6.8) 

Proof. The proof is quite similar to that of Thm. 3.12. The procedure described 
by Eqs. (3.26) through (3.30) applies also with Z replaced by X\d.  This leads 
the construction of Ow by setting Q0 = W and exp OW=TNTN- ,..4'0. From (6.4) 
and (6.5), it follows that Owe X. The argument explained in Eqs. ( 3.33 ) through 
(3.37) shows also the uniqueness of Ow. From (3.5) and (3.27), it appears that 
Ow depends polynomially on W, R and their derivatives. Note that, unlike in the 
proof of Thm. 3.12, Ow depends explicitly on R since W is independent of R. [] 

This theorem generalizes an analogous theorem of Ref. [ 10 ]. Here, however, 
due account is taken of the constraints coming from the global geometry of Z and 
L. 

D e f i n i t i o n  6.1. For any We Wconst. let 

W,- = (exp Ow W),,. (6.9) 

From (6.6)-(  6.8 ), Wc belongs to  ~Vconstr. Clearly, because of the nilpotency of 
r, We depends polynomially on W, R and derivatives thereof. The uniqueness of 
Ow ensures further that the map W-, Wc is gauge invariant, i.e., for ,Ee X and 
We Wconstr, 

(exp ~W)~c = Wc. (6.10) 

The above suggests the following gauge fixing condition: 

W =  We, We ~/red , (6.1 1 ) 

defining the reduced manifold Wred. Wred can be characterized in terms of a set 
of second class constraints. Let 

X' = {~[3e Lie Gauo, ~ valued in (ker ad t L ) ± } • ( 6 . 1 2  ) 

Then, Wrea is the submanifold of W determined by 

J z ~ 0 ,  ~eX '  , (6.13) 

and is explicitly given by 

Wred = { WI We W, W valued in ker ad t i } • ( 6 . 1 4 )  
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It is readily verified that (6.3) holds with X replaced by X', showing that the 
reduced manifold is invariant under Confo. 

Wred equipped with the Dirac brackets (., .}*~ supported on the space ~ (W~ed) 
of differential polynomials on Wr~d defines the reduced Poisson manifold 

(Wred, {', "}*x). 

7. The Poisson manifold (Wred, {',  " ]~) and the classical Walgebra 

The task now facing one is the computation of the Dirac brackets {., .}* and 
the study of the properties of Wre d. This is the topic of this last section. In due 
course, a structure of classical W algebra will emerge. 

Remark. In this section, 27, G, S, A and p are defined as in Section 5. 

Any element We Wred is completely characterized by an ordered sequence 
( w~ ) r/e,7 with w,e KNj,÷ i. Thus, one has the isomorphism 

W~ed= (~ KNj,+,, (7.1) 
r/~// 

which expresses the KN content of  Wre d. In fact, from (6.1 4 ), it follows that an 
element We W belongs to Wr~d if and only if W is of  the form 

W= ~ wr/t, _j, , (7.2) 
r/e// 

where w, e KNj,+ i. 
The dual space Wr~d of Wre d can be defined as the complex vector space of 

ordered sequences X=  (xr/)r/~n with x~ e KN_j, with the dual pairing being given 
by 

(X,  W ) =  ~ Nr/(xr/, w~) , (7.3) 
~le H 

see Eq. (2.1 0). Thus, one has the isomorphism 

W~Vo .-- (~ KN_j,. (7.4) 
r/e// 

Since Wre O is a subspace of W, it is possible to characterize Wr~d as the quotient 
of  W v by the annihilator of  Wr~d in W v under the non singular dual pairing 
(4.1 4). The quotient is parametrized by assigning an element of each equiva- 
lence class. Of course, this should be done according to a convenient criterion. To 
this end, the following theorem is useful. 

Theorem 7.1. For any Xe W~d and any Ve Wred, there is a unique element Ee W ~ 
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such that 

E~j~=x~, rl~I-l, (7.5a) 

a d t  1 ( 0 4 - a d  V ) E = 0 .  (7.5b) 

Explicitly, one has 

E = [ l + N a d t _ l ( O A - a d V ) l K P y ,  Px= ~ x,t,,g,, (7.6) 
q~17 

where N is the formal inverse of  M =  ½ ad t 1 ad t+ 1 extended by 0 on ker ad t+ 
and K~N, K>~ 2j,, where j ,  is defined in Section 2. 

Proof The proof given here is inspired by methods developed in Ref. [3 ]. Let 
n+ be the projector on ker ad t+ 1 along ran ad t_ 1- One has 

N M = M N =  1 - n+ , (7.7) 

[n+, M] = 0 ,  [n+, N] = 0 ,  (7.8a,b) 

[ad to, M] = 0 ,  [adto, N] = 0 .  (7.9a,b) 

Consider Eq. (7.5b). Next, I shall show that it can be solved locally in any coor- 
dinate patch and give its general solution. Using (7.7), (7.8a) and (3.21), one 
checks that (7.5b) is equivalent to 

[ 1 - N a d t _ l ( O - a d ( V - R t _ l )  ) ]( l -z t+ )E 

= N a d  t_ i ( 0 - a d (  V - R t  1) )rt+ E .  (7.10) 

The operator Nad  t_ i (0 - a d (  V - R t _  1 ) ) satisfies the relations 

[ N a d t _ l ( O - a d ( V - R t  I))]K=O, K > 2 j , ,  (7.11a) 

N a d t  l ( 0 - a d ( V - R t  i ) ) = N a d t  l ( 0 ~ - a d V ) + l - ~ z + .  (7.11b) 

Eq. (7.1 la) follows from (7.9b) and the fact that ad t_ 1 lowers the degree by 1. 
Eq. (7.11 b) follows from (3.21 ) and (7.7). Recall that, for a nilpotent operator 
T, ( 1 - T ) -  1 is defined and it is given by the series Z ~.=o T" containing only a 
finite number of non vanishing terms. From (7.11 ), one has then 

E =  [ 1 - N a d  t_l ( 0 - a d (  V - R t _  1 ) ) ] -I~z+ E 

K 

= ~ ( N a d t _ l ( O A - a d  V)+l-~z+)"zc+E 
n = 0  

= ( l + N a d t _ l ( O A - a d  V) )tCn+E, K>~2j, . (7.12) 

This proves that the local solution of (7.5b) is completely determined by rc+E. 
This suffices to show the local existence and uniqueness of the solution of (7.5). 
For any patch a, let Ea be a local solution. From (3.1), it is easy to verify that 
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ad t_l  (OA~ - ad V~) (Ad LabEb -Ea) = 0 .  (7.13) 

By the local uniqueness, it appears that the holomorphic g-valued 0-cochain {E~) 
defines an element E~ W ~ if and only if n + (Ad L~bEb-- E~ ) = 0. From ( 3.3 ) and 
(3.4), this condition is equivalent to E~,j, E KNj, for r/~H. [] 

Definition 7.1. For any XsWLd and any VE W~a, let Xvbe the element E o f W  v 

given by (7.6). 

For fixed V~Wred, the map X ~ X v  defines a linear injection of ~ / r e d  into W v 
with the property that 

(X, W)= (Xv, W ) ,  (7.14) 

for any Xs Wr~d and We Wrcd, where the pairing in the right hand side is the one 
defined by (4.14 ). The above relation follows from (2.10 ), ( 7.2 ) and ( 7.6 ). Note 
that (Xv, W) is actually independent of V, since only the components Xv, j, = 
x~ contribute to the result. This expression for (X, W) is important because it 
can obviously be extended to any We W. 

The Dirac brackets {.,-}* are completely defined by those of the linear 
functionals 

t].X( W ) =  (X, W) =~Xv(W) , WEWred , (7.15) 

for Xe W~d, where I have used (7.14) and (5.3) and V is any element of Wred. 
The calculation of the Dirac brackets of the 2 x involves the choice of a basis of 

X'. Luckily the explicit expression of the basis elements is not necessary to carry 
out the calculation. 

Theorem 7.2. For any X, YE Wr~d, one has 

{2x, 2 r } * ( W ) =  ([X,~-lw, Yo], W)+xZ(Xo, Yo), 

= ( [Xo, Y~-lW], W )  +xZ(Xo, Yo), We ~d~/re d . ( 7 . 1 6  ) 

Proof. From (5.3) and (5.4), for any ~ L i e  Gau0 and V~Wrcd, one has 

{Jz, 2xv}~(W)=x(~, ( O , - x  -~ ad W)Xv) , WEW. (7.17) 

From (6.12 ) and (7.17 ), it follows that 

{J~,2xv},~(W) lv=,~-,w=O, 3EX',  WEWred. (7.18) 

From this relation and the well-known formula of the Dirac brackets, one obtains 

{~,x,J 2 Y}~K( W) = {t],xv, 2 Yo }K( W) I F=K-IW 

={2xo,2rv},c(W) lv=,~-,w, W~Wred • (7.19) 
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In the second member, I have used the fact that the Dirac bracket is independent 
of the extension 2 rv of 2 r to W used to set V= 0 and analogously in the third 
member. The cocycle term is 

(XK ,w, OAYo>=--(Y,~-,w, OAXo)=(Xo,  OAYo>, W~Wred , (7.20) 

since, by (7.5b), OAXo, OAYoZWred and (Xv, W> is independent of VzWre~ for 
any WE W~a. [] 

The first term in the fight hand side of (7.16) is a differential polynomial in 
the x,, y, and w, and is computable in principle using (7.16 ). The second term, 
proportional to x, is the anomaly. It can be calculated explicitly. The result is 

C_- f ( xn, Dj~yo > , (7.21) 
q~ H m e  l,7,m ~ - f i t  + 1 jq,~rl 

O 0 = 1 9  , 

D~/: =O2 + I R , 

D~ =03+2R0+ (OR) , 

D3/2=O4+ 5RO2 + 5(OR)O+ 3 (O2R + 3R 2) , 

D2 =05+ IORO 3+ 15(0R)02+ [9(02R) + 16R2]0+2 [ ( 0 3 R )  - 4 - 8 R ( O R )  ], 

etc. ( 7.22 ) 

The Dj are the well-known Bol operators [ 21 ]. 
There are other relevant Dirac brackets. Consider the energy-momentum ten- 

sor T. For any ueLie Confo, the restriction of T, to Wred, which will be denoted 
by the same symbol, is given by (5.9b) with WeWrea. Explicitly, 

T.=2- ' /2( to ,  to)(U, Wo>+(1/2x) ~" N.(u,w,~®2> , (7,23) 
qe lT,Jq = 0 

where oeHis  defined in Section 2. As appears, Tu~(Wr~d) .  Note that only the 
components w, with q~ H and j ,  = 0, which correspond to ker ad t_ ~ c~ % contrib- 
ute to the term quadratic in W 2. From (7.16 ), one has 

{T,, Tv}*= Tt,.v I + 12X(to, to)a(u, v) , (7.24) 

for any u, w Lie Confo, which is to be compared with ( 5.17 ). Using (7.16 ), one 
also finds 

{T~, 2x}* =2o~x+X'A(L(u), Xo),  (7.25) 

for any uzLie Confo and any Xc Wren, where OuX= (0~x.).~/~ is given by (4.11 ) 

2 In Ref. [6], such a quadratic contribution was overlooked. 
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with O=x. and h = - j , .  The calculations involved in deducing (7.24) and (7.25) 
are straightforward. 

Let us discuss briefly the results just obtained. Eq. (7.16 ) defines a Dirac bracket 
W algebra in the so-called lowest weight gauge. In fact, analogous expressions 
have been worked out in the literature following closely related techniques (see 
Refs. [ 9-13 ] ). The W algebra proper is obtained by letting x, and y, in (7.16) 
be elements of the KN basis of  KN_j,. The form of the anomaly was first found 
in Ref. [ 29 ] in a different approach, where, however, the deep relation with the 
theory of SL(2, C) embeddings into simple Lie groups was not apparent. From 
(7.24), it follows that the T~ form a Dirac bracket Virasoro algebra of classical 
central charge 12x(t0, to). From (7.25 ), it also appears that the functions 2 x with 
xo=O are primary with respect to the Virasoro algebra. All the above properties 
have a counterpart in the standard algebraic formulation to W algebras [9-13]. 

One may consider the W algebra obtained above in terms of modes. For any 
rl~H and any MeY+pj. ,  let X,,M be the element of ~ / r e d  defined by the ordered 
sequence t s "(-J") ~ Set ~vq.(VM 1(~11, 

~ , M = 2  Xq,M . ( 7 . 2 6 )  

From (7.16), by means of a straightforward calculation, one finds, to order O (x °), 

{J.,M, J¢,N } Z = N.6.•CFLrneIq, m~-j"+ l C~-2-q,m] ~(M--J") (N-J") 

+ E E F,.¢~h~d~)~¢)fl+J¢)J¢.L+O(K-l), 
~elI LeZ+pj¢ 

for rl, (~11, Me T/ + pj. and Ne T_ + pj~. Here, 

(7.27) 

M N (l+j~) = E (.J., m;Jo nIj¢,j¢)X,.MO,.mXc, NO¢,., Vt1+J¢' --L 
m~lq.nelGm+n=j ~ 

~(--J,) (--jq) __ V(M--j,) M N - - (  Dj.v~-'")), 

X ~ M o - F  t.,t-J.) • - O,,,j.~M ) ,  etc. (7.28) 

(cf. Eq. (3.12)) and F~,¢ ~ and N~ are defined in Section 2 (cf. Eqs. (2.3) and 
(2.10 ) ). It can also be seen that "M/~ (j") N (j¢) L( 1 +j¢) and ~Mr(-J") Nt--J") vanish unless j ,  + 

j¢--2j¢<~L--M--N<~ [2( j ,+j¢- j¢)+ l ] l + 2 j ¢ - j , - j ¢  and -2(2 j~  + 1)/~<M+ 
N~< 0, respectively, if the weights involved are non exceptional• The expression 
of X.,MO follows easily from noting that the equation ad t_ ~OAX,,MO = 0 obeyed by 
X,.MO is equivalent to (3.5) with h = 0 , / t= j ,  and ~=  VN °") . 
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